

Roll No:

Printed Page: 1 of 2 Subject Code: KCA203

MCA

(SEM II) THEORY EXAMINATION 2023-24 OPERATING SYSTEMS

TIME: 3 HRS

M.MARKS: 100

CO

1

2

1

2

3

3

4

4

5

5

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

Attempt all questions in brief. 1. Question Q no. Marks What are the advantages of Multiprocessor systems? 2 a. 2 b. List the Services of operating system function. 2 Define the term trap or exception? c. What is Process control block? List out the data field associated with 2 d. PCB. What are the methods for handling deadlocks? 2 e. f. Define request edge and assignment edge. 2 What is the main function of the memory-management unit? 2 g. What do mean by page fault? 2 h. What are the various file operations? 2 i. What are the allocation methods of a Disk Space? 2 i.

SECTION B

2. Attempt any *three* of the following:

Q no.	Question					Marks	CO
a.	Enumera sketch.	te the different of	perating system str	ucture and explai	n with neat	10	1
b.	Consider the set of 6 processes whose arrival time and burst time are given below-						2
		Process Id	Arrival time	Burst time	2		
		P1	0	7			
		P2	1	5			
		P3	2	3			
		P4	3	1			
		P5	4	2			
		P6	5	1			
	If the Cl						
c.	the average waiting time and average turnaround time. Explain the RAG representation in Deadlock Detection.						3
d.	Consider following 12K, and 12K, 10l	a swapping sy g hole sizes in n 1 15K. Which ho K, 9K for First Fi	stem in which n nemory order: 10H le is taken for succ t? Repeat this exer	nain memory cc K, 4K, 20K, 18k cessive segment : cise for Best-Fit,	K, 7K, 9K, requests of Worst-Fit,	10 10	4
		Ŭ	ithm makes the mo		1	10	5
e.	Explain the Linked list and indexed file allocation methods with neat10diagram. Mention their advantages and disadvantages.10					10	5

Roll No:

MCA

(SEM II) THEORY EXAMINATION 2023-24

OPERATING SYSTEMS

TIME: 3 HRS

M.MARKS: 100

6

SECTION C

3.	Attempt any one part of the following:							
Q no.	Question	Marks	CO					
a.	Describe the differences between symmetric and asymmetric multiprocessing. What are three advantages and one disadvantage of multiprocessor systems?	10	1					
b.	What do you understand by Time-sharing systems? Describe the advantage of time sharing system.	10	1					
4.	Attempt any one part of the following:		~~					
Q no.	Question	Marks	CO					
a.	Discuss in detail the critical section problem and also write the solution for Readers-Writers Problem with semaphores.	10	2					
b.	Explain different process states and its transition with a neat diagram.	10	2					
5.	Attempt any <i>one</i> part of the following:							
Q no.	Question	Marks	СО					
a.	Define Deadlock? State and explain four conditions that are necessary for deadlocks to occur with neat example.	10	3					
b.	Consider the following snapshot of a system:	10	3					
	ProcessesAllocationMAXAvailableABCDABCD	.0	2					
	P0 0 1 1 0 0 2 1 0 1 5 2 0	13						
	P1 1 2 3 1 1 6 5 2	γ						
	P2 1 3 6 5 2 3 6 6)"						
	P3 0 6 3 2 0 6 5 2 P4 0 0 1 4 0 6 5 6							
	P4001406561. Calculate the content of the need matrix?							
	 Calculate the content of the need matrix? Is the system in a safe state? 							
6.	Attempt any <i>one</i> part of the following:							
Q no.	Question	Marks	CO					
a.	Explain in briefly and compare, fixed and dynamic memory partitioning schemes.	10	4					
b.	Illustrate the page-replacement algorithms use the reference	10	4					
	1,2,3,4,2,1,5,6,2,1,3,7,6,3,2,1,3,6 with 3 page frame. Find number of							
	page fault by using Following algorithms. a) LRU b) Optimal page							
	replacement							
7.	Attempt any one part of the following:		~~					
Q no.	Question	Marks	CO					
a.	Describe the file system in detail.	10	5					
b.	Suppose that a disk drive has 5000 cylinders, numbered 0 through 4999.	10	5					
	The drive is serving a request at cylinder 143. The queue of pending							
	requests, in FIFO order is 86, 1470, 913, 1774, 948, 1509, 1022, 1750,							
	130 Starting from the head position what is the total distance (in							
	cylinders) that the disk arm moves to satisfy all the pending requests for							
	each of the following disk-scheduling algorithms ? SSTF, LOOK, C-SCAN.							