Roll No:

BTECH

(SEM V) THEORY EXAMINATION 2023-24

HEAT & MASS TRANSFER

TIME: 3 HRS

PAPER ID-310724

M.MARKS: 70

 $2 \ge 7 = 14$

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

Attempt all questions in brief. 1.

a.	What is overall heat transfer coefficient?	
b.	What is critical thickness of insulation?	
c.	What is effectiveness of fin?	
d.	What is Fourier number?	
e.	State the significance of NTU method.	
f.	What is space resistance?	
g.	What is Reynolds number?	

SECTION B

2. Attempt any three of the following:

Atten	Attempt any <i>three</i> of the following: $7 \ge 3 = 21$				
a.	A cold storage room has walls made of 220mm of brick on the outside, 90 mm of				
	plastic foam, and finally 16 mm of wood on the inside. The outside and inside air				
	temperatures are 25°C and – 3°C respectively. If the inside and outside he				
	transfer coefficients are respectively 30 and 11 W/m2°C, and the therma				
	conductivity of the brick, foam and wood are 0.99, 0.022 and 0.17 W/m°C				
	respectively, determine:				
	i) The rate of heat removal by refrigeration if total wall area is 85 m^2				
	ii) The temperature of inside surface of the brick.				
b.	What are the advantages and disadvantages of dimensional analysis?				
c.	A long cylindrical bar (k= 17.4 W/m°c), α = 0.019 m ² /h) of radius 80 mm comes				
	out of oven at 830°C throughout and is cooled by quenching it in a large bath of				
	40 °C coolant. The surface coefficient of heat transfer between the bar surface and				
	the coolant is 180 W/m ² °C. Determine				
	i) The time taken by the shaft center to reach 120°C				
	ii) The surface temperature of the shaft when its center temperature is 120°C.				
d.	With the help of neat sketch, explain boiling curve.				
e.	State flicks law of diffusion. What are its limitations?				

SECTION C

3. and part of the following. A 44 a man 4 a

 $7 \times 1 - 7$

Atten	npt any <i>one</i> part of the following: $/ x I = /$			
a.	Derive the expression for general heat conduction equation in cartesian co-			
	ordinate.			
b.	The amount of F ₁₂ used in compression refrigeration system is 4 tonnes/hour. The			
	brine, flowing at 850 kg/min. with inlet temperature of 12°C, is cooled in the			
	evaporator. Assuming F ₁₂ entering and leaving the evaporator at saturated 1			
	and saturated vapour respectively, determine the area of evaporation required.			
	Take the following properties: for F_{12} saturation temperature: - 23°C ; c_p = 1.17			
	$kJ/kg^{\circ}C$; $h_{fg}= 167.4 kJ/kg$, $c_{p}(brine)6.3 kJ/kg^{\circ}C$; U=8368 kJ/m ² h°C.			

Printed Page: 2 of 2 Subject Code: RME502

Roll No:

BTECH

(SEM V) THEORY EXAMINATION 2023-24

HEAT & MASS TRANSFER

TIME: 3 HRS

M.MARKS: 70

	empt any <i>one</i> part of the fo		7 x 1 = 7			
a.			4 mm size at 200°C is sudden			
	quenched into liquid oxygen at -183 °C. Starting from fundamentals or derivit					
	the necessary expressio	n, determine the time re	quired for the plate to reach			
	temperature 0f – 70°C. Assume h= 20000KJ/m ² hr°C, $c_p=0.8$ kJ/kg°C and $\rho=3000$					
b.	kg/m³.Derive the expression for temperature distribution and heat distribution in					
						straight fin of rectangula
• • •						
	empt any one part of the fo		$7 \ge 1 = 7$			
a.	Derive an expression for	LMTD for parallel flow h	eat exchangers?			
b.	Discuss the effects of va	rious parameters on therm	al conductivity of solids.			
	The curved surface of the rod is losing heat to the surrounding air at 27°C.					
	heat transfer coefficient is 10 W/m ² °C calculate the loss of heat from the rod i					
	is made of (i) copper (k=335 W/m°C) and ii) steel (k=40 W/m ^{2°} C).					
			$(\mathbf{K} \rightarrow \mathbf{W})$ in C).			
	, , , , , , , , , , , , , , , , , , ,	60	, , , , , , , , , , , , , , , , , , ,			
Att	empt any <i>one</i> part of the fo	ollowing:	7 x 1 = 7			
Att a.	empt any <i>one</i> part of the fo Derive an expression for e	ollowing:	$7 \ge 1 = 7$ for thermal radiation systems			
	empt any <i>one</i> part of the fo	ollowing:	$7 \ge 1 = 7$ for thermal radiation systems			
a.	empt any <i>one</i> part of the fo Derive an expression for e	ollowing:	$7 \ge 1 = 7$ for thermal radiation systems			
a.	empt any <i>one</i> part of the fo Derive an expression for e	ollowing:	$7 \ge 1 = 7$ for thermal radiation systems			
a.	empt any <i>one</i> part of the fo Derive an expression for e	ollowing:	$7 \ge 1 = 7$ for thermal radiation systems			
a.	empt any <i>one</i> part of the fo Derive an expression for e	ollowing:	$7 \ge 1 = 7$ for thermal radiation systems			
a.	empt any <i>one</i> part of the fo Derive an expression for e	ollowing:	$7 \ge 1 = 7$ for thermal radiation systems			
a.	empt any <i>one</i> part of the fo Derive an expression for e	ollowing:	$7 \ge 1 = 7$ for thermal radiation systems			
a.	empt any <i>one</i> part of the fo Derive an expression for e	ollowing: electrical network analogy s for the configuration sho 2 2 3 1 A tube with cross-section of	7 x 1 = 7 for thermal radiation systems wn in the figure below 1 1 Hemispherical surface			
a.	empt any one part of the for Derive an expression for e Calculate the shape factor	bllowing: electrical network analogy s for the configuration sho 2 2 3	7 x 1 = 7 for thermal radiation systems wn in the figure below 1			

7. <u>Attempt any *one* part of the following:</u>

7 x 1 = 7

Atten	$\gamma x = \gamma$
a.	Calculate the net radiant heat exchanger per m ² area for two large parallel plates at
	temperatures of 427°C and 27°C respectively. ε (hot plate) = 0.9 and ε (cold plate)
	= 0.6. if a polished Aluminium shield is placed between them, find the percentage
	reduction in the heat transfer; ε (shield)=0.4
b.	The velocity distribution in the boundary layer is given by $u/U = y/\delta$, where u is the
	velocity at a distance y from the plate and u/U at $y=\delta$, δ being boundary layer
	thickness, find i) the displacement thickness, ii) the momentum thickness, iii) the
	energy thickness and iv) the value of $\delta^{*/\theta}$