

Roll No:

BTECH

(SEM V) THEORY EXAMINATION 2023-24

CONTROL SYSTEM

TIME: 3 HRS

1.

M.MARKS: 70

 $2 \ge 7 = 14$

Note: 1. Attempt all Sections. If require any missing data, then choose suitably.

SECTION A

a.	Define the type & order of system.
b.	State self loop and dummy node in terms of signal flow graph.
c.	Discuss the effect of PD and PI controllers on 2ndorder control system
	performance.
d.	Write the formula of the following :
	i) Rise time ii) Peak Time iii) Peak Overshoot iv) Settling time
e.	Outline the special case of Routh-Hurwitz criterion.
f.	Explain the gain crossover frequency and phase crossover frequency in
	terms of Bode Plot.
g.	List the properties of state transition matrix.

SECTION B Attempt any *three* of the following: 2.

Attempt all questions in brief.

SECTION B				
Atten	Attempt any <i>three</i> of the following: $7 \times 3 = 21$			
a.	Describe the closed loop control system and explain any one example with suitable block diagram.			
b.	Explain the time domain specifications and mark them on the response of			
	2 nd order system when subjected to unit step input. Derive the formula of Peak overshoot.			
c.	Determine the value of K such that the roots of the characteristics equation given below lie to the left of line $s = -1$. $s^3 + 13s^2 + 18s + K = 0$			
d.	Demonstrate the significance of gain margin and phase margin on a polar plot. Also, draw and properly label the polar plot for stable and unstable system.			
e.	Calculate state transition matrix for $A = \begin{bmatrix} 0 & -1 \\ 2 & -5 \end{bmatrix}$			

SECTION Attempt any one part of the following: 3.

 $7 \ge 1 = 7$

1 AUU	ipt any one part of the following.	/ A I = /
a.	Discuss the root locus and sketch the loci of the roots of a unity	feedback open
	loop transfer function $G(s)H(s) = \frac{K}{s(s+1)(s+3)(s+4)}$	
b.	The open loop T.F. of certain unity feedback	system is
	$G(s)H(s) = \frac{K(s+10)(s+20)}{s^2(s+6)}$	
	Compute	
	(i) Range of K for stability	
	(ii) Marginal value of K	
	(iii) Location of roots for marginal stability	

Printed Page: 2 of 2 Subject Code: REE503

PAPER ID-310717

Roll No:

BTECH

(SEM V) THEORY EXAMINATION 2023-24

CONTROL SYSTEM

TIME: 3 HRS

M.MARKS: 70

Atte	empt any <i>one</i> part of the following: $7 \times 1 = 7$
a.	Describe Kp, Kv , and Ka and steady state error for a system with open loop
	transfer function as : $G(s)H(s) = \frac{12(s+2)(s+3)}{s(s+1)(s+5)(s+4)}$
	$\frac{1}{s(s+1)(s+5)(s+4)}$
	Where the input is $r(t) = 4 + t + t^2$
b.	Derive the generalized error coefficients and corresponding steady state error.
Atte	Example any <i>one</i> part of the following: $7 \ge 1 = 7$
a.	Using Mason's gain formula obtain the transfer function of the SFG diagram given below-
	-H
	$R(s)$ G_2 G_3 G_4 $C(s)$
	G_1 G_7 G_9 G_6 G_8 G_{10}
	G ₆ G ₅
	-H ₂
	Ŋ.
b.	For mechanical system shown in Fig, draw mechanical network, write
	differential equation of performance and also draw force-current and force-voltage analogous network.
	j ^s ^{K1} ÅB
	$\frac{f(t)}{M_1} + Y_1$
	3,)*
	äK₂
	M ₂ Y ₂
Atte	empt any <i>one</i> part of the following: $7 \times 1 = 7$
a.	Compute the phase crossover frequency and gain margin with open loop
	transfer function given below by sketching the polar plot. Also compute on
	stability of the system. $G(s)H(s) = \frac{1}{s(s+1)(3s+1)}$
b.	Explain the mapping theorem and Nyquist stability criterion with one example.
Atten a. b.	empt any one part of the following: $7 \ge 1 = 7$ Demonstrate the construction and working principle of AC servomotor. Draw
	its torque speed characteristics and mention its various applications.
	Judge the controllability and observability of a system with
	$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ -6 & -11 & -9 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, C = \begin{bmatrix} 10 & 5 & 1 \end{bmatrix}$