

Roll No:

BTECH

(SEM II) THEORY EXAMINATION 2023-24

PHYSICS

TIME: 3 HRS

M.MARKS: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1.	Attempt <i>all</i> questions in brief.	2 x 10 =	= 20	
Q no.	Question	Marks	CO	
a.	Write the postulates of special theory of relativity.	02	1	
b.	What are the massless particles?	02	1	
c.	What do you understand by displacement current?	02	2	
d.	Define skin depth.	02	2	
e.	State Wien's displacement law.	02	3	
f.	Deduce an expression for the wavelength of matter waves.	02	3	
g.	Why two independent sources cannot be coherent?	02	4	
h.	What do you understand by the resolving power of an optical instrument?	02	4	
i.	Describe the basic principle of an optical fibre.	02	5	Ň
j.	What are the main components of laser?	02	5	
	SECTION B		22.	

SECTION B

2.	Attempt any <i>three</i> of the following:	3 x 10 =	- 30
Q no.	Question	Marks	СО
a.	Deduce the relativistic velocity addition theorem. Show that it is consistent with Einstein's second postulate.	10	1
b.	Assuming that all the energy from a 1000 watt lamp is radiated uniformly; calculate the average values of the intensities of electric and magnetic fields of radiation at a distance of 2m from lamp.	10	2
с.	What is de-Broglie hypothesis? Find the least energy of an electron moving in one dimension in an infinitely high potential box of width 1×10^{-10} m. (Mass of electron is 9.1×10^{-31} kg and $h = 6.63 \times 10^{-34}$ J-s)	10	3
d.	Explain the phenomenon of interference in thin films due to reflected light.	10	4
e.	What are Einstein's coefficients? Obtain a relation between them.	10	5

SECTION C

3.	Attempt any one part of the following:	$1 \ge 10 = 10$	
Q no.	Question	Marks	СО
a.	Deduce necessary expression for time-dilation. Show that time-dilation is a real effect.	10	1
b.	Deduce Einstein's mass – energy relation $E = mc^2$. Give some evidence showing its validity.	10	1

4.	Attempt any one part of the following:	1 x 10 =	= 10
Q no.	Question	Marks	CO
a.	Derive electromagnetic wave equation in free space and prove that electromagnetic wave travels with speed of light in free space.	10	2
b.	State and deduce Poynting theorem for the flow of energy in an	10	2

1 | Page

Roll No:

BTECH

(SEM II) THEORY EXAMINATION 2023-24

PHYSICS

TIME: 3 HRS

M.MARKS: 100

Electromagnetic field. If the magnitude of H in a plane wave is 1	
amp/meter, find the magnitude of E for plane wave in free space.	

5.	Attempt any <i>one</i> part of the following:		
Q no.	Question	Marks	СО
a.	Derive Schrodinger time-independent wave equation. Write the physical	10	3
	significance of a wave function also.		
b.	What is Compton effect? Derive an expression for Compton shift.	10	3

6.	Attempt any <i>one</i> part of the following:	1 x 10 =	= 10	
Q no.	Question	Marks	CO	
a.	Derive an expression for the dark and the bright rings observed in	10	4	
	Newton's ring experiment. How can this experiment be used to find out			
	the wavelength of unknown light?			
b.	Discuss Fraunhofer's single slit diffraction and show that the relative	10	4	N.5
	intensities of successive maximum are nearly 1:0/22 : 1/62 : 1/121:			0,
				2.6
7.	Attempt any <i>one</i> part of the following:	1 x 10 =	= 10	
0	Our stin O	Maulan	00	

7.	Attempt any <i>one</i> part of the following:	1 x 10 =	= 10
Q no.	Question	Marks	CO
a.	Explain acceptance angle and acceptance cone of an optical fibre. What do you mean by numerical aperture? Derive expressions for them.	10	5
b.	Describe the principle and working of Ruby laser system with the help of neat diagram.	10	5

- help