

				Sub	ject	Coc	ie: r	CE	502
Roll No:									

Printed Page: 1 of 3

BTECH (SEM V) THEORY EXAMINATION 2023-24 STRUCTURAL ANALYSIS

TIME: 3 HRS **M.MARKS: 100**

Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

Q no.	Question	Marks	CO
a.	What do you understand by the term structural load?	2	1
b.	Discuss the cable.	2	1
c.	What do you mean by compound and complex space truss?	2	2
d.	What are the various types of supports?	2	2
e.	Define the term strain energy or resilience of the member.	2	3
f.	Write the statement of Castigliano's first theorem.	2	3
g.	What do you understand by influence line?	2	4
h.	State Muller-Breslau's principle for determinate structure.	2	4
i.	What are the different types of arches?	2	5
j.	Define horizontal thrust.	2	5
	SECTION B	0	γ ₀ .
2.	Attempt any three of the following:	10.1	
Q no.	Question	Marks	CO

SECTION B

2. Attempt any three of the following:

Q no.	Question	Marks	CO
a.	Find the SI & KI of the following truss and frame.	10	1
	G F - E D mm mm mm		
b.	Analyze the truss shown in Fig. by the method of tension coefficient and	10	2
	determine the forces in all the members. 80 kN B C 60 kN A 60° 60° 60° 60° D E 4 m		
c.	State and prove the Maxwell's reciprocal theorem.	10	3

				Sub	ject	Coc	de: F	CE	502
Roll No:									

Printed Page: 2 of 3

BTECH (SEM V) THEORY EXAMINATION 2023-24 STRUCTURAL ANALYSIS

TIME: 3 HRS M.MARKS: 100

d.	A single load of 150 kN moves on a girder or span 30 m. Construct the	10	4
	influence line for shear force and bending moment for a section 10 m		
	from the left support.		
e.	A three hinged semicircular arch of radius R carries a UDL of w per run	10	5
	over the whole span. Find Horizontal thrust & Location and magnitude		
	of maximum bending moment.		

SECTION C

3. Attempt any *one* part of the following:

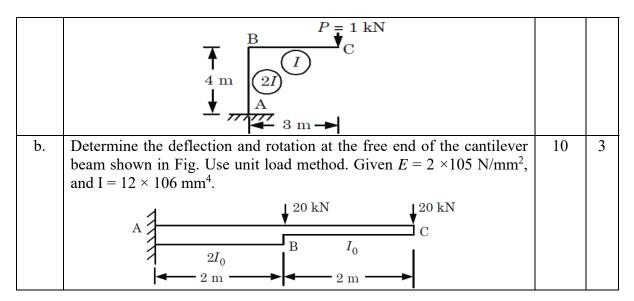
 a. A cable of uniform cross-sectional area is stretched between two supports 100 m apart with one end 4 m above the other end as shown in Fig. The cable is loaded with a UDL of 10 kN/m and the sag of cable measured from higher end is 6 m. Find the horizontal tension in the cable. b. Derive the expression for Length of the Cable if Both ends are at the Some lovel 	Q no.	Question	Marks	CO
	a.	supports 100 m apart with one end 4 m above the other end as shown in Fig. The cable is loaded with a UDL of 10 kN/m and the sag of cable measured from higher end is 6 m. Find the horizontal tension in the cable. Also find the maximum tension in the cable. VA VA VB	10	1
	b.	Derive the expression for Length of the Cable if Both ends are at the Same level.	10	1

4. Attempt any *one* part of the following:

Q no.	Question	Marks	СО
a.	Explain in detail about method of substitution and method of tension	10	2
	coefficient with examples.		
b.	Find the forces in the members of the given truss.	10	2
	20 kN 1 2 70 kN 3 m 3 m 3 m		

5. Attempt any *one* part of the following:

Q no.	Question	Marks	CO
a.	Determine the vertical deflection at point C in the frame shown in Fig.	10	3
	Given $E = 200 \text{ kN/mm2}$ and $I = 30 \times 106 \text{ mm4}$.		



				Sub	ject	Coc	ie: F	CCE	2502
Roll No:									

Printed Page: 3 of 3

BTECH (SEM V) THEORY EXAMINATION 2023-24 STRUCTURAL ANALYSIS

TIME: 3 HRS M.MARKS: 100

6. Attempt any *one* part of the following:

Q no.	Question	Marks	CO
a.	What are the propositions used for several point loads moving over a simply supported beam? Explain and prove propositions1.	10	4
b.	A Uniformly distributed load of intensity 30 kN/m crosses a simply supported beam of span 60 m from left to right. The length of UDL is 15m. Find the value of maximum bending moment for a section 20 m from left end. Find also the absolute value of maximum bending moment and shear force in the beam.		4

7. Attempt any *one* part of the following:

Q no.	Question	Marks	CO
a.	Show that the parabolic shape is a funicular shape for a three hinged	10	5
	arch subjected to a uniformly distributed load over its entire span.		
b.	A three hinged parabolic arch of 60 m span and a rise of 12 m are	10	5
	subjected to a uniformly distributed load of 30 kN/m intensity over its		
	left half portion and point load of 120 kN at right quarter span. Calculate		
	the bending moment, normal thrust and radial shear at a section 15 m		
	from the left support.		