

Subject Code: KEC053

Roll No:

BTECH

(SEM V) THEORY EXAMINATION 2023-24

VLSI TECHNOLOGY

TIME: 3 HRS

2.

M.MARKS: 100

 $10 \times 3 = 30$

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

1.	Attempt <i>all</i> questions in brief.	$2 \times 10 = 20$	
Qno.	Question	Marks	CO
a.	Mention the advantages of ICs.	2	1
b.	Define polishing.	2	1
c.	What is auto doping in growth process?	2	2
d.	What is plasma oxidation?	2	2
e.	Explain photo mask.	2	3
f.	What are PR materials?	2	3
g.	Write the types of diffusion.	2	4
h.	Define ion-implantation	2	4
i.	Enlist different types of IC packages.	2	5
j.	Write all packaging design considerations.	2	5

SECTION A

SECTION B

Attempt any <i>three</i> of the following:
Explain Electronic Grade Silicon with neat diagram

a.	Explain Electronic Grade Silicon with neat diagram		10	1
b.	Discuss Vapor-Phase Epitaxy.		10	2
c.	Explain in detail Optical Lithography.	2	10	3
d.	Explain fick's law of diffusion.	N 01	10	4
e.	Discuss Package Types and Packaging Design Considerations.		10	5

SECTION C

3.	Attempt any <i>one</i> part of the following:		10 x 1 = 10	
a.	Explain CZ process in detail with neat diagram. What is the pull rate in CZ	10	1	
	technique?			
b.	Discuss different shaping operations involved in preparing wafers with	10	1	
	diagram.			
4.	Attempt any <i>one</i> part of the following:		$10 \ge 1 = 10$	
a.	Explain the principle of Molecular Beam Epitaxy.	10	2	
b.	What is latch up? How it is avoided in CMOS technology?	10	2	
5.	Attempt any one part of the following:	10 x 1 =	= 10	
a.	Explain the kinetics of wet watching. How gold is etched?	10	3	
b.	How is the silicon nitride used? Explain its deposition variables.	10	3	
6.	Attempt any <i>one</i> part of the following:		$10 \ge 1 = 10$	
a.	Define sheet resistance. Describe a method for its measurement.	10	4	
b.	Discuss gaseous and liquid diffusion system.	10	4	
7.	Attempt any <i>one</i> part of the following:		10 x 1 = 10	
a.	Explain Metallization and describe the problems associated with this process.	10	5	
b.	What do you mean by Sputtering? Explain Sputtering yield.	10	5	