

Roll No:

Subject Code: KCA201

MCA

(SEM II) THEORY EXAMINATION 2023-24 **THEORY OF AUTOMATA & FORMAL LANGUAGES**

TIME: 3 HRS

M.MARKS: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

Qno.	Question	Marks	CO		
a.	What do you mean by Formal languages?	2	1		
b.	What do mean by acceptability of string?	2	1		
c.	State the Kleen's Theorem.	2	2		
d.	Write down the Closure properties of Regular Languages.	2	2		
e.	Differentiate Right Linear and Left Linear grammars.	2	3		
f.	What do you mean by simplification of CFG?	2	3		
g.	What do you mean by ambiguity in CFG?	2	4		
h.	Define Nondeterministic Pushdown Automata.	2	4		
i.	Define Linear Bounded automata.	2	5		
j.	What do you mean by Halting Problem?	2	-5		
SECTION B					
2.	Attempt any <i>three</i> of the following:	19.6			
		1: 10	1		

SECTION B

Attempt any three of the following: 2.

	-	•						<u> </u>	
a.		the following Mea		ne into an	equivale	nt Moore	machine:	10	1
	Mealy Machine Transition Table								
		PresentState	NextState						
		Ģ	a = 0		a = 0 $a = 1$				
			State	Output	State	Output			
		$\rightarrow q_0$	<i>q</i> ₂	0	q_1	0			
		q_1	q_0	1	<i>q</i> ₃	0			
		q_2	q_1	1	90	1			
		q_3	<i>q</i> ₃		q_2	0			
b.	Explain the difference between Regular and Non-Regular Languages with suitable examples.					ges with	10	2	
c.	Find the derivation tree for the generating the string 11001010 from the following grammar: $S \rightarrow 1B 0A$, $A \rightarrow 1 1S 0AA$, $B \rightarrow 0 0S 1BB$.			from the	10	3			
d.	Construct the PDA to accept the following language: $L = \{a^{2n}b^n \text{ where } n > 0\}.$			10	4				
е.	What do you mean by Non-deterministic Turing Machine. Also construct a TM over $\{a, b\}$ which contains a substring abb.			10	5				
				$\frac{19}{\text{CTION}}$				1	

SECTION C

3. Attempt any one part of the following:

a.	Check whether thestrings 00101 and 110010 areaccepted or not by the	10	1
	following FA:		

Roll No:

Subject Code: KCA201

MCA (SEM II) THEORY EXAMINATION 2023-24 THEORY OF AUTOMATA & FORMAL LANGUAGES

TIME: 3 HRS

M.MARKS: 100

b.	Convert the following ε – NFA to an equivalent DFA:	10	1
	$e \qquad q_1 \qquad e \qquad q_2 \qquad b \\ e \qquad q_1 \qquad e \qquad q_2 \qquad b \\ e \qquad q_3 \qquad e \qquad q_4 \qquad a \\ e \qquad q \qquad q \\ e \qquad q \qquad q \qquad q \\ e \qquad q \qquad q \qquad q \\ e \qquad q \qquad q \qquad q \qquad q \\ e \qquad q \qquad$		75
4.	Attempt any one part of the following:	2	0.
a.	State and prove Arden's theorem.		2
b.	Construct an Finite Automata equivalent to the Regular expression given by: $R = (00 + 11)^* 11(0 + 1)^* 0.$		2
5.	Attempt any one part of the following:		
a.	Construct CFG for the regular expression: $R = (0 + 1)^* 01^*$	10	3
b.	Give the following CFG having Sas start symbol, find an equivalent CFG with no useless symbols. $S \rightarrow AB \mid CA, A \rightarrow a, B \rightarrow BC \mid AB, C \rightarrow aB \mid b$	10	3
6.	Attempt any one part of the following:	1	<u> </u>
a.	Prove that the language: $L = \{a^{i^2}: where \ i \ge 1\}$ is not context free.	10	4
b.	Construct a PDA that accepts the language generated by the following grammar: $S \rightarrow aB$, $B \rightarrow bA bA \rightarrow aB$.	10	4
7.	Attempt any one part of the following:		
a.	Design a TM for a set of all <i>strings</i> with equal number of a and b.		5
b.	Define recursive function. Prove that the function:	10 10	5
	$f(x) = \begin{cases} \frac{x}{2} & \text{if } x \text{ is even} \\ \frac{x-2}{2} & \text{if } x \text{ is odd} \end{cases}$		