5. Answer any two parts of the following:

 $(5 \times 2 = 10)$

- (a) Describe the construction details of a single-phase inductionenergy motor with neat diagram.
- (b) A balanced delta connected load of $(12 + i9)\Omega$ /phase is connected to 3-phase 400 V supply. Calculate line current, power factor and power drawn by it.
- (c) Shown that in a 3-phase star connected system, the ling voltage is $\sqrt{3}$ times of the phase voltage.
- Answer any one part of the following:

 $(10 \times 1 = 10)$

- (a) Derive an emf expression of power transformer. Also draw an equivalent circuit of it.
- Discuss the classification of power system in terms of voltage level. Also draw line diagram of typical substation.
- Answer any two parts of the following: $(5 \times 2 = 10)$
 - Discuss the principle of operation of single-phase induction motor.
 - Explain speed-torque characteristic of dc series motor. Ala mention typical application of it.
 - A dc shunt motor develops an open-circuit emf of 250 volt at 1500 rpm. Find its developed torque for an armature current of 20 amperes.

Printed Pages-4

EEE101

(Following Paper ID and Roll No.	to b	e f	ille	d in	yo	ur A	ınsı	ver	Во	ok)
PAPER ID: 2301 Roll No.					,					

B. Tech.

(SEM. I) THEORY EXAMINATION 2011-12

ELECTRICAL ENGINEERING

Time: 3 Hours

Total Marks: 100

Note: Attempt all Sections. Assume any missing data, if any.

SECTION-A

Answer all parts with brief explanation:

 $(2 \times 10 = 20)$

- Write the properties of ideal voltage source.
- Write an expression of resonance frequency for high O-series RLC circuit.
- (c) Why two-wattmeter method for power measurement is universal one?
- Explain the term "creep" in energy meter.
- Write the abbreviation of ACSR in power system.
- What is the concept of grid in power system?
- Classify the losses in power transformer.
- Explain the term "slip" in induction motor.
- What will happen if the back emf of dc motor vanishes?
- Why dc series motor is preferred in elevators?

SECTION-B

- Answer any three parts of the following: $(10 \times 3 = 30)$
 - State Norton's Theorem in dc circuit. Also calculate Norton's equivalent of the network shown in fig. 2(a) at terminal AB. Determine the current through 4 Ω resistor across AB.

- Show that power in 3-phase, balanced system is constant at every instant and is given by 3 $V_{_p}I_{_p}\cos\varphi,$ where $V_{_p},I_{_p}$ and ϕ have usual meanings.
- Describe the construction and principle of operating of attraction type moving iron instrument.
- Derive the quality factor Q of the series RLC circuit at resonance. Define the bandwidth for the same.
- A three-phase 50 Hz, induction motor has a full-load speed of 1460 rpm. Calculate slip, number of poles and frequency of rotor induced emf.

2

SECTION-C

Note: - Attempt all questions in this Section.

Answer any two parts of the following:

 $(5 \times 2 = 10)$

- Explain voltage and current sources of a network with characteristics. Explain source-transformation principle in any circuit.
- State and prove maximum power transfer theorem.
- Using nodal analysis, find the current through 10 Ω resistor shown in fig. 3(c).

Fig. 3(c)

Answer any one part of the following: $(10 \times 1 = 10)$

- The voltage applied to a circuit is $V = 100 \sin (\omega t + 30^{\circ})$ and current flowing in the circuit is $i = 20 \sin(\omega t + 60^{\circ})$. Determine the impedance, resistance, reactance, power and power factor of the circuit.
- Calculate the resonance frequency of the circuit shown in fig. 4(b):

EEE101/KIH-26193

Turn Over