(Following Paper ID and Roll No.	
PAPER ID: 1156 Roll No.	
1.00	

B.Tech.

(SEM. I) ODD SEMESTER THEORY EXAMINATION 2013-14

ENGINEERING MATHEMATICS-I

Time: 3 Hours Total Marks: 100

Note: Attempt questions from each Section as per instructions.

The symbols have their usual meaning.

SECTION-A

- 1. Attempt all parts of this question. Each part carries 2 marks. $(2\times10=20)$
 - (a) If $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$; $B = \{2, 3, 5, 7\}$ then find $A \cap B$ and hence show that $A \cap B = B$.
 - (b) Define Power Set of any set A. If $A = \{1, 2, 3, 4\}$ find P(A).
 - (c) Find the value of n such that ${}^{n}P_{5} = 42 \times {}^{n}P_{5}$, n > 4.
 - (d) How many chords can be drawn through 21 points?
 - (e) Find the coordinate of the focus axis the equation of the directrix and latus rectum of the parabola y² = 8x.
 - (f) Find the equation of the ellipse the major along the x-axis and passing through the points (4, 3) and (-1, 4).
 - (g) What is the value of $\lim_{x \to \infty} \sin x$?

- (h) At what point is the function $\frac{x+5}{(x-3)(x-7)}$ continuous?
- (i) Differentiate $\sin (ax^2 + bx + c)$ with respect to x.
- (j) Is Rolles theorem applicable to the function $f(x) = x^{2/3}$ in [-2, 1]?

SECTION-B

- 2. Attempt any three parts of this question: (10×3=30)
 - (a) In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?
 - (b) Find the equation of the ellipse whose centre is at the origin, foci are (0, 1), (-1, 0) and eccentricity is $\frac{1}{2}$.
 - (c) Find the derivatives of $\frac{1}{x^2}$ using first principle.
 - (d) Find $\frac{dy}{dx}$ when $y = x^{\log x} + (\cos x)^{\sin x}$
 - (e) Find the $\lim_{z \to 1} \frac{z^{\frac{1}{3}} 1}{z^{\frac{1}{6}} 1}$.

SECTION-C

Note: Attempt any two parts from each question of this Section. (5×2×5=50)

- 3. (a) If $A = \{1, 2, 3\}$, $B = \{3, 4\}$ and $C = \{4, 5, 6\}$ find:
 - (i) $(A \times B) \cap (A \times C)$
 - (ii) $(A \times B) \cup (A \times C)$.

- (b) If $f(x) = x^2$ and g(x) = 2x + 1 be two real functions. Find (f+g)(x), (f-g)(x), (fg)(x) and (f/g)(x).
- (c) Find the domain and range of the real function $f(x) = \sqrt{9-x^2}$.
- 4. (a) Find the distance of the point (-1, 1) from the line 12(x+6)=5(y-2).
- (b) Find the equation of the circle with radius 5 whose centre lies on x-axis and passes through (2, 3).
 - (c) Find the equation of the hyperbola having foci $(0, \pm \sqrt{10})$ passing through (2, 3).
- 5. (a) Find $\lim_{x \to \frac{\pi}{2}} \frac{\tan 2x}{x \frac{\pi}{2}}$.
 - (b) Find $\frac{dy}{dx}$, where $x = a \left[\cos t + \log \tan \left(\frac{t}{2} \right) \right]$, $y = a \sin t$, a is constant.
 - (c) If $x\sqrt{1+y} + y\sqrt{1+x} = 0$, show that $\frac{dy}{dx} = \frac{1}{(1+x)^2}$.
- $\int_{0}^{6} f(x) = \sin 2x + \cos 2x \text{ with respect}$ to x.
 - (b) Find $\frac{dy}{dx}$ if $y = \cos^{-1} \left(\frac{a + b \cos x}{b + a \cos x} \right)$.
 - (c) Discuss the continuity of the function:

$$f(x) = \begin{cases} \frac{x^2 - x - 6}{x^2 - 2x - 3}, & x \neq 3 \\ \frac{5}{3}, & x = 3 \end{cases} \text{ at point } x = 3.$$

- 7. (a) Determine n if ${}^{2n}C_3 : {}^{n}C_3 = 12:1$.
 - (b) Find r if $5 \times {}^{4}P_{r} = 6 \times {}^{5}P_{r-1}$.
 - (c) Find the number of different 8 letter arrangements that can be made from the letters of the word DAUGHTER so that:
 - (i) All vowels occur together.
 - (ii) All vowels do not occur together.