Paper Id:

199103

Roll No: Sub Code:KAS103

B. TECH. (SEM I) THEORY EXAMINATION 2019-20 MATHEMATICS-I

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions.

Q. No.	Question	Marks	CO
a.	Show that vectors $(1, 6, 4)$, $(0, 2, 3)$ and $(0, 1, 2)$ are linearly independent.	2	1
b.	Define Lagrange's mean value theorem.	2	2
c.	If $u = x(1 - y)$, $v = xy$, find $\frac{\partial(u,v)}{\partial(x,y)}$.	2	3
d.	Show that vector $\vec{V} = (x+3y)\hat{\imath} + (y-3z)\hat{\jmath} + (x-2z)\hat{K}$ is solenoidal.	2	5
e.	Find the value of 'b' so that rank of $A = \begin{bmatrix} 2 & 4 & 2 \\ 3 & 1 & 2 \\ 1 & 0 & b \end{bmatrix}$ is 2.	2	1
f.	Evaluate $\int_0^2 \int_0^1 (x^2 + 3y^2) dy dx$.	2	4
g.	Find grad \emptyset at the point (2, 1, 3) where $\emptyset = x^2 + yz$	2	5
h.	If $u = \cos^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$, then find the value of $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}$.	2	3
i.	Find $\frac{du}{dt}$ if $u = x^3 + y^3$, $x = a \cos t$, $y = b \sin t$. Find the area lying between the parabola $y = 4x - x^2$ and above the line $y = x$.	2	* 3
j.	Find the area lying between the parabola $y = 4x - x^2$ and above the	7)2	4
	line $y = x$.	*	

SECTION B

2. Attempt any three of the following:

Q. No.	Question	Marks	CO
a.	Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 4 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 0 & 1 \end{bmatrix}$ and hence find A^{-1} .	10	1
b.	If $y = e^{m\cos^{-1}x}$, prove that $(1+x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2 + m^2)y_n = 0$. Hence find y_n when $x = 0$.	10	2
c.	If $u^3 + v^3 + w^3 = x + y + z$, $u^2 + v^2 + w^2 = x^3 + y^3 + z^3$ and $u + v + w = x^2 + y^2 + z^2$, then show that $\frac{\partial(u,v,w)}{\partial(x,y,z)} = \frac{(x-y)(y-z)(z-x)}{(u-v)(v-w)(w-u)}$.	10	3
d.	Evaluate the integral by changing the order of integration: $I = \int_0^1 \int_{x^2}^{2-x} xy dy dx$.	10	4
e.	Verify Stoke's theorem for the vector field $\vec{F} = (x^2 - y^2)\hat{\imath} + 2xy\hat{\jmath}$ integrated round the rectangle in the plane $z = 0$ and bounded by the lines $x = 0$, $y = 0$, $y = 0$, $y = 0$, $y = 0$	10	5

SECTION C

Paper Id:

199103

Roll No:

3. Attempt any one part of the following:

- Q. No. Question Marks CO
- For what values of λ and μ the system of linear equations: a.

$$x + y + z = 6$$

$$x + 2y + 5z = 10$$

$$2x + 3y + \lambda z = \mu$$

10 1

10

1

has (i) a unique solution (ii) no solution (iii) infinite solution

Also find the solution for $\lambda = 2$ and $\mu = 8$. b.

Find the rank of the matrix A	$= \begin{bmatrix} 1 & 3 & 4 & 2 \\ 2 & -1 & 3 & 2 \\ 3 & -5 & 2 & 2 \\ 6 & -3 & 8 & 6 \end{bmatrix}$ by reducing it to normal
form.	re-3 8 el

4. Attempt any one part of the following:

Q. No.	Question	Marks	CO	
a.	Verify the Cauchy's mean value theorem for the function e^x and e^{-x} in			
	the interval $[a, b]$. Also show that 'c' is the arithmetic mean between a	10	2	
	and b.			
h	Trace the curve $r^2 = a^2 \cos 2\theta$	10	2	

Attempt any one part of the following: 5.

- Q. No. a.
- If u = f(2x 3y, 3y 4z, 4z 2x), prove that $\frac{1}{2} \frac{\partial u}{\partial x}$
- Find the volume of the largest rectangular parallelepiped that can be b. 3 10 inscribed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

Attempt any one part of the following: 6.

- Q. No. Question Marks CO Evaluate $\iint (x+y)^2 dx dy$, where R is the parallelogram in the xya.
- plane with vertices (1,0), (3,1), (2,2), (0,1) using the transformation 10 4 u = x + y, v = x - 2y.
- Find the volume of the region bounded by the surface $y = x^2$, $x = y^2$ b. 10 4 and the planes z = 0, z = 3.

7. Attempt any one part of the following:

- Question Q. No. Marks CO a. Verify the divergence theorem for $\vec{F} = 4xz\hat{\imath} - y^2\hat{\jmath} + yz\hat{K}$ taken over 10 5 the rectangular parallelepiped $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$. Find the directional derivative of $\emptyset(x, y, z) = x^2yz + 4xz^2$ at (1, -2, 1)b.
- in the direction of $2\hat{i} \hat{j} 2\hat{k}$. Find also the greatest rate of increase of 5 10 Ø.