

				Sub	ject	Co	de: l	RAS	5201
Roll No:									

Printed Page: 1 of 2

BTECH (SEM II) THEORY EXAMINATION 2021-22 ENGINEERING PHYSICS-II

BTECH SEM-II THEORY EXAMINATION 2021-22 SUBJECT NAME : ENGINEERING PHYSICS -II

Time: 3 Hours Total Marks: 70

Notes:

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECTION-A		Attempt All of the following Questions in brief	Marks (7 X2=14)			
Q1(a) What are Bravias lattices? Illustrate them.						
Q1(b)	Q1(b) Distinguish between paramagnetic and diamagnetic substances.					
Q1(c)	(c) What is pointing vector and state its unit					
Q1(d)	Write and explain Fermi dirac probability distribution function.					
Q1(e)	Q1(e) Explain Meissner's effect?					
Q1(f)	Q1(f) Define Skin Depth.					
Q1(g)	Q1(g) What are carbon nanotubes and state application of nanotubes?					

			. (
SECTION-B		Attempt ANY THREE of the following Questions	Marks (3X7=21)			
Q2(a)	What is C	ompton Effect? Derive and expression for Compton	Shift			
Q2(b)	What is local field? Obtain an expression for Lorentz equation for local field and hence					
	deduce Cl	ausius-Mossotti relation				
Q2(c)	Derive the	e electromagnetic wave equations in vacuum and sho	w that the waves travels at a			
	speed of li	ight.	2,5			
Q2(d)	Deduce for	ormula for the effective mass of an electron. What is	the physical meaning of			
	negative e	effective mass?				
O2(e)	What are	Buckyballs? Discuss their properties and application.				

SECT	ION-C	Attempt ANY ONE for	ollowing Qu	estion			Marks (1X7=	7)
Q3(a)	Describe t	the crystal structure of	its atomic	radius, nu	umber of aton	ns		
	per unit ce	ell and atomic packing	g factor.	0.5	2			
Q3(b)	Derive B	ragg's Law for the d	iffraction of	of X-rays by	crystals.	Describe	Bragg's X-ra	ıy
	spectrome	eter.		Ω_{i}			CO1	

SECTION-C		Attempt ANY ONE following Question	Marks (1 X7=7)					
Q4(a) The follow		ving data refers to a dielectric material; ε_r = 4.94 and	$n^2 = 2.69$, where n is the					
	index of re	raction, calculate the ration between electronic and ionic polarizability for this						
	material.	rial.						
Q4(b)	Describe t	he Langevin's theory of diamagnetism. Show that the	ne magnetic susceptibility is					
	negative a	nd independent of temperature.						

SECTION-C		Attempt ANY ONE following Question	Marks (1 X7=7)				
Q5(a)	Q5(a) State and deduce Poynting theorem for the flow of energy in an electromagnetic field.						
Q5(b)	Q5(b) If the earth receives 2 cal min ⁻¹ cm ⁻² solar energy, what are the amplitudes of electric and						
	magnetic	fields of radiation?					

SECTION-C	Attempt ANY ONE following Question	Marks (1X7=7)

				Sul	oject	Co	de: l	RAS	5201
Roll No:									

Printed Page: 2 of 2

BTECH (SEM II) THEORY EXAMINATION 2021-22 ENGINEERING PHYSICS-II

- , ,	What do you mean by fermi level? Show that the Fermi level of an intrinsic semiconductor lies half way between conduction and valence bands.
	In a P type semiconductor, the Fermi level is 0.3 eV above the valence band at temperature 300 K. Determine the new position of Fermi Level for temperature 400 K.

SECTION-C		Attempt ANY ONE following Question	Marks (1 X7=7)					
Q7(a)	(a) What are superconductors? Explain their classification as type I and type II							
	supercond	reonductors.						
Q7(b)	For a spec	a specimen of a superconductor, the critical fields are 1.4×10^5 and 4.2×10^5 A/m for						
	temperature 14K and 13 K respectively. Calculate the transition temperature and critical							
	fields at $0 K$ and $4.2K$.							

QP22EP2.068
QP2EP2.068
29.01.2022.09:02:51 \ 1/5.240.61.178