Subject Code: KAS201T

Roll No:

BTECH

(SEM II) THEORY EXAMINATION 2021-22

ENGINEERING PHYSICS

Time: 3 Hours

PAPER ID-421047

Notes:

Total Marks: 100

- Attempt all Sections and assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECT	ION-A	Attempt All of the following Questions in brief	Marks(10X2=20)	CO
Q1(a)	What is frame of reference in motion?			1
) Show that massless particles can exist only if the they move with the speed of light			1
	and their energy E and momentum p must have the relation $E = pc$.			
Q1(c)	21(c) In an electromagnetic wave, the electric and magnetic fields are 100V/m and			2
	0.265A/m	. What is the maximum energy flow		
Q1(d)	Define the concept of Skin depth for high and low frequency waveforms.			2
Q1(e)	What is Compton effect and Compton shift?			3
Q1(f)	Why is black the best emitter?			3
Q1(g)	Why the center of Newton's ring in reflected system is dark?		4	
Q1(h)	Explain Rayleigh's criterion of resolution.		4	
Q1(i)	What do you mean by acceptance angle and cone for an optical fiber?			5
Q1(j)	(j) Differentiate spontaneous emission and stimulated emission.			5
				~

SECT	ION-B	Attempt ANY THREE of the following Questions	Marks(3X10=30)	CO
Q2(a)) What is special theory of relativity? Derive Lorentz transformation equation. \sim			1
Q2(b)	Assuming that all the energy from a 1000 watt lamp is radiated uniformly; calculate			2
	the average values of the intensities of electric and magnetic fields of radiation at a			
	distance o	of 2m from lamp.	· · ·	
Q2(c)	Q2(c) Calculate the energy difference between the ground state and the first excited sta		first excited state	3
	for an electron in a one-dimensional rigid box of length 25Å.			
	d) Newton's rings are observed in reflected light of wavelength 5900A ⁰ . The diameter			4
	of 10 th dar	rk ring is 0.50cm. Find the radius of curvature of the len	is.	
Q2(e)		lex fibre has $\mu_1 = 1.466$ and $\mu_2 = 1.46$ where μ_1 and μ_2 are		5
		d cladding respectively. If the operating wavelength of		
	and the di	ameter of the core = 50 μ m, calculate the cut-off parameter	eter and the number	
	of modes	which the fibre will support.		
		<u>o</u> V		

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q3(a)	What was the object of conducting Michelson-Morley experiment? Illustrate the			1
		at with proper diagram and necessary mathematical	derivations. Also state	
	the outcor	nes.		

Q3(b) Deduce Einstein's mass – energy relation $E = mc^2$. Give some evidence showing its validity.

SECT	ION-C	Attempt ANY ONE following Question Marks (1X10=10) CO
Q4(a)	Deduce the	ne Maxwell's equations for free space and prove that electromagneti	c 2
	waves are transverse in nature.		
Q4(b)	Define radiation pressure and momentum of electromagnetic wave. Also determine		2
	an express	sion for radiation pressure and momentum.	

Printed Page: 2 of 2

Subject Code: KAS201T

PAPER ID-421047

BTECH

(SEM II) THEORY EXAMINATION 2021-22 **ENGINEERING PHYSICS**

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q5(a)	What is t	he physical significance of a wave function? De	rive Schrodinger time	3
	independe	nt wave equation.	_	
Q5(b)	Q5(b) What is Compton effect? Deduce an expression for Compton shift.			3
		• • •		
SECT				
SECI	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
		Attempt ANY ONE following Question ayleigh criterion of resolution how one can increase		
Q6(a)	What is R		the resolving power of	4
Q6(a)	What is R a diffract	ayleigh criterion of resolution how one can increase	the resolving power of olution show that the	4
Q6(a)	What is R a diffract resolving	ayleigh criterion of resolution how one can increase on grating? Using Rayleigh criterion for just res	the resolving power of olution show that the	4

Q6(b) Discuss the phenomena of Fraunhofer diffraction at a single slit and show that the 4 relative intensities of the successive maximum are nearly 1: $4/9\pi^2$: $4/25\pi^2$: $4/49\pi^2$:

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
		optical fibre with a core diameter large enough has a core refr		5
		ding refractive index 1.47. Determine		
		ical angle at the core cladding interface,		40
		merical aperture for the fibre		
	(iii) the ac	ceptance angle in air for the fibre.		
Q7(b)	What do y	you mean by population inversion? Describe the principle a	and working of Ruby	5
	laser syste	m with the help of neat diagram.		
		222	220	
		QX	NN NY	
		Ch.		
		60.5		
		29.01.202208:58:3		
		22		
		0.01		
		1-1-		
		0)		