

				Sub	ject	Co	de: I	KAS	<u> 201</u>
Roll No:									

Printed Page: 1 of 1

BTECH (SEM II) THEORY EXAMINATION 2021-22 PHYSICS

Time: 3 Hours Total Marks: 100

Notes:

• Attempt all Sections and Assume any missing data.

• Appropriate marks are allotted to each question, answer accordingly.

SECTI	ON-A Attempt All of the following Questions in brief	Marks(10X2=20)	CO	
Q1(a)	Q1(a) State Einstein's postulates of special theory of relativity.			
Q1(b)	Q1(b) Show that the rest mass of a photon is zero.			
Q1(c)	Q1(c) State equation of continuity.			
Q1(d)	Define skin depth.			
Q1(e)	What is black body radiation?			
Q1(f)	What is wave-particle duality?			
Q1(g)	What are coherent sources?			
Q1(h)	Differentiate Fresnel's and Fraunhofer's diffraction.			
Q1(i)	What do you mean by attenuation and dispersion in optical fiber?		5	
Q1(j)	What are the main components of laser?		5	

SECT	ION-B Attempt ANY Three of the following Questions	Marks(3X10=30)	CO
Q2(a)	What is length contraction? Derive the necessary expression for it. Sho	w that $x^2+y^2+z^2-c^2t^2$ is	1
	invariant under Lorentz transformation.		
Q2(b)	What is displacement current? For a medium, conductivity $\sigma = 58 \times$	10^6 seimen/m, $\in_r = 1$. Find out	2
	the conduction and displacement current densities if the magnitude of	electric field intensity is given	
	by $E = 150 \sin (10^{10} t) \text{ Volt/m}.$		
Q2(c)	What is de-Broglie hypothesis? Find the least energy of an electron r		
	infinitely high potential box of width 1×10 ⁻¹⁰ m. (Mass of electron is	$9.1 \times 10^{-31} \text{ kg and } h = 6.63 \times 10^{-3}$	1 .
	34 J-s)	G	
Q2(d)	Explain interference in thin films and prove that reflection and transm	ission are complementary with	4
	each other.		
Q2(e)	Derive the expressions for acceptance angle and numerical aperture of	an optical fiber.	5

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
		prentz transformation equations, derive time dilation. Show that		1
	effect.			
Q3(b)	Discuss and	derive the relativistic velocity addition theorem. Show that it is	s consistent with Einstein's	1
	second post	ulate. Show that $E^2 - P^2 C^2 = m_0^2 c^4$, Where P is the mome	ntum.	

SECTI	ION-C Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q4(a)	Derive electromagnetic wave equation in free space and prove that electromagnetic waves travel with		2
	speed of light in free space.		
Q4(b)	Derive the Poynting or work-energy theorem for the flow of energy in a	n electromagnetic field. Also	2
	give the physical interpretation	_	

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q5(a)	Give the pequation.	hysical significance of wave function. Derive Schrodinger	s time independent wave	3
Q5(b)	Define Com	pton effect and derive an expression for the Compton shift (Δλ).	3

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q6(a)	Explain and	describe the formation of Newton's rings in reflected light.	Prove that in reflected the	4
	diameters of dark rings are proportional to the square roots of natural numbers.			
Q6(b)	Discuss sin	gle slit Fraunhofer's diffraction and show that the relative	e intensities of successive	4
	maximum a	re nearly 1: 1/22 : 1/62 : 1/121:		

SE	CTI	ON-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q7((27(a) With the help of diagram classify and describe various types of optical fibers based on modes and		5		
		core refracti	ve index.		
Q7((b)	Draw a neat diagram of He-Ne laser and explain the construction and working of it.		5	