Roll No:

MBA

(SEM II) THEORY EXAMINATION 2021-22 QUANTITATIVE TECHNIQUES FOR MANAGERS

Time: 3 Hours Notes:

• Attempt all Sections and Assume any missing data.

• Appropriate marks are allotted to each question, answer accordingly.

CD CD				1 0 11	-				60		
	ION-A		-		ving Question	s in brief		Marks(10X2=20)	CO		
					Research?						
			mean by sta	les of na	iture?						
	 c) What is duality? d) What is Basic Feasible Solution of m × n transportation problem? 										
-	 what is Basic Feasible Solution of m × n transportation problem? What do you mean by Unbalanced Assignment Problem? 										
					Person Zero						
					the meaning			time?			
			mean by Qu		U U	or total c	Tupbeu				
					ulure and Su	dden failu	ıre?				
			al path in a								
			i				0		.0-		
SECT	ION-B	I	Attempt ANY	Y ONE o	f the followin	g :		Marks (2X15	=30)		
Q2(a)	i) Solve	the fo	llowing LP	P.		0 /					
	Max Z =	$2x_1$ -	$+5x_2 + 7x_3$			51		6			
	Subject t	0	-					.0.			
	5		$1 + 2x_2 + 4x_1$	$_{3} \leq 100$				145.240.61			
		X1	$+4x_2+2x_3$		2V			5.4			
			$x_1 + x_2 + 3x_3$		Э.						
	X X 71			≤ 100							
	Where	x	$x_1, x_2, x_3 \ge 0$					S			
	•••		1	•.1 .1	11 0		•••1				
								s to five machines; each job			
			but the optin			cessing e	ach jot	on each machine is given be	low		
	(111 185.) 1	i iiiu (out the optim				0				
				IVI	achines	6					
			M ₁	M ₂	M ₃	M4	M5				
		\mathbf{J}_1	7	5	9	8	11				
		J_2	9	12	7	11	10				
	Jobs					_					
	JODS	J_3	8	5	γ^4	6	9				
		J_4	7	3	6	9	5				
		J_5	4	6	7	5	11				
		- 5				-					
Q2(b)	Phrase of	f the	particular ca	ase (Exa	mple for Qu	estions rel	lated w	ith given phase in Sub Parts)			
	i) A Con	npany	has four pl	ants P ₁ ,	P ₂ , P ₃ , P ₄ , fr	om which	n it supp	olies to three markets M1, M2,			
								g data, given the plant to ma	ırket		
	shifting o	costs,	quantities a	available	e at each plan	nt and qua	ntities	required at each market.			
	М	arke	t		Plant			Required at			
			I				I	1			

PAPER ID-421822

			St	ıbjeo	ct C	ode:	KN	1BN	206)

Roll No:

MBA

(SEM II) THEORY EXAMINATION 2021-22 QUANTITATIVE TECHNIQUES FOR MANAGERS

	\mathbf{P}_1	P_2	P ₃	P ₄	Market
M ₁	19	14	23	11	11
M ₂	15	16	12	21	13
M ₃	30	25	16	39	19
Available at					
plant	6	10	12	15	43

ii) A truck owner finds from his past records that the maintenance cost of a truck (whose purchase price is Rs. 3,00,000) during the first 8 years of its life and the resale price at the end of each year, is as follows :

*								
Year	1	2	3	4	5	6	7	8
Maintenanc				72,00	84,00	96,00	1,08,00	1,20,00
e Cost (Rs.)	36,000	48,000	60,000	00	0	0	0	0
				2				
Re-Sale	2,00,00	1,50,00	1,00,00	80,00	70,00	60,00		G
Price (Rs.)	0	0	0	0	0	0	50,000	40,000
`````````````````````````````````		•	<u>ov</u>	-	•	•		

Find the optimum replacement period of the truck.

SECT	ION-C Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q3(a)	Discuss briefly the importance of Operations Research in de	vision making.	
Q3(b)	A shop keeper prepares a food at a total cost of Rs. 4 per pla	e and sells it at a price of Rs.	
	6. The food is prepared in the morning and is sold during the	same day. Unsold food during	
	the same day is spoiled and is to be thrown away. According	to the past sales, number of	
	plates is not less than 20 or greater than 23. You are to form	late the (i) pay off table (ii)	
	loss table.	•	

SECT	ION-C Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q4(a)	Vitamin A and B found in foods $F_1$ and $F_2$ . One unit of food	F ₁ contains 3 units of vitamin	
	A and 4 units of Vitamin B.		
	One unit of food F1 and F2 cost Rs. 4 and Rs. 5 respectively. 7	The minimum daily need per	
	person of vitamin A and B is 80 and 100 units respectively. A	ssuming that anything in	
	excess of daily minimum requirement is not harmful, find out	the optimum mixture of $F_1$	
	and F ₂ at the minimum cost which meets the minimum require	ement of vitamin A and B.	
Q4(b)	Explain the method used for solving a transportation problem	& testing its optimality.	

SECT	ION-C	Attempt	t ANY ON	E followin	g Question	1		Marks (1X10=10)	CO		
Q5(a)	Discuss b	Discuss briefly the Hungarian method of solving an assignment problem.									
Q5(b)	Solve the following game whose pay off matrix is as below:										
				Play	ver B						
			Ι	II	III	IV					
	Player	Ι	20	15	12	35					
	A	II	25	14	8	10					

## Printed Page: 3 of 3

PAPE	R ID-42182	2

## Subject Code: KMBN206

Roll No:

#### MBA

## (SEM II) THEORY EXAMINATION 2021-22

## **QUANTITATIVE TECHNIQUES FOR MANAGERS**

III	40	2	10	5
IV	-5	4	11	0

SECT	ION-C Atte	mpt ANY (	ONE follow	ving Quest	ion			Marks (1X10=	-10)	CO	
	A certain ma										
	assembling an										
		on are given below. Find the optimal sequence so as to minimize the total									
	processing tim	ne. Also calculate the total elapsed time.									
	Item	1	2	3	4	5	6				
	Assembling	8	10	6	7	9	14				
	Polishing	5	9	10	8	012	8			18	
					0						
O6(b)	What do you n	neen hu e	nueve? Gi	vo on ovor	mland	avalain the	hasic alar	ments of queu		*	
Q0(0)	what do you h	licali Uy a C			lipic allu	explain the		<u>inclus of queu</u>			
SECT	ION-C Atte	mpt ANY (	ONE follow	ving Quest	ion			Marks (1X10=	-10)	CO	
Q7(a)	Why does the	problem of	f replacem	ent arises	? What is	individual	& group	replacement?			
Q7(b)	The time estin	nates (in w	eeks) for t	he activiti	es a PER'	T network	are given	below:			
		Optimis	tic V	Most likely time Pess			istic 🔊				
	Activity	time (to	)	(t _m ) tin			ime t _p				
	1—2	1		1		7 9					
	1—3	1		4		7					
	1—4	2		2		8	^				
	2—5	1		1		<b>2</b> ¹					
	3—5	2		5		14					
	4—6	2		5	<u></u>	8					
	5—6	3		6	0	15					
	(i) Draw the pr			0	-V						
	(ii) Determine	the expect	ed project	duration.	5						
				- Ch.							
				V							