

Printed Page: 1 of 2
Subject Code: RAS203
Roll No:

BTECH (SEM II) THEORY EXAMINATION 2021-22 ENGINEERING MATHS-II

Time: 3 Hours Total Marks: 70

Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

2*7 = 14

a.	Calculate order and degree of the differential equation $\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2} = k \frac{d^2y}{dx^2}$.
b.	Find particular integral of $(D-2)^2y = 8e^{2x}$.
c.	Prove that $J_0'(x) = -J_1(x)$.
d.	Evaluate $\int_{-1}^{1} x^2 P_2(x) dx$.
e.	Find the Laplace transform of $F(t) = e^t t^{-1/2}$.
f.	Find the function whose Laplace transform is $\frac{e^{-\pi s}}{s}$.

SECTION E

Find the Fourier constant a_n for $f(x) = x \cos x$ in the interval $(-\pi, \pi)$.

2. Attempt any three of the following:

7*3 = 21

a.	Solve by changing independent variable the differential equation
	$(1+x)^2 \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = 4\cos\log(1+x).$
b.	Use Frobenius method to find the series solution of
	$2x(1-x)\frac{d^2y}{dx^2} + (5-7x)\frac{dy}{dx} - 3y = 0.$
c.	State Convolution Theorem and hence evaluate $L^{-1} \frac{s}{(s^2+1)(s^2+4)}$.
d.	Obtain Fourier series for $f(x) = \begin{bmatrix} \pi x & 0 \le x \le 1 \\ \pi(2-x), 1 \le x \le 2 \end{bmatrix}$
e.	If a string of length l is initially at rest in equilibrium position and each of its
	point is given the velocity $\left(\frac{\partial y}{\partial t}\right)_{t=0} = b \sin^3 \frac{\pi x}{l}$, find the displacement $y(x,t)$.

SECTION C

3. Attempt any *one* part of the following:

7*1 = 7

a.	Solve the following simultaneous differential equations
	$\frac{dx}{dt} = 3x + 2y, \frac{dy}{dt} = 5x + 3y$
	dt = 3x + 2y, dt = 3x + 3y
b.	Solve the differential equation $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = \frac{e^{-x}}{x+2}$.
	$dx^2 dx dx x + 2$

Printed Page: 2 of 2
Subject Code: RAS203
Roll No:

BTECH (SEM II) THEORY EXAMINATION 2021-22 ENGINEERING MATHS-II

4. Attempt any *one* part of the following:

7*1 = 7

a	ι.	Express $F(x) = x^3 - 5x^2 + x + 2$ in terms of Legendre's polynomials.
b).	Prove that $J_{3/2}(x) = \sqrt{\frac{2}{\pi x}} \left(\frac{\sin x}{x} - \cos x \right)$.

5. Attempt any *one* part of the following:

7*1 = 7

	Find the Laplace transform of the rectified semi-wave function defined by
	$f(t) = \begin{bmatrix} sinwt, 0 < t \le \frac{\pi}{w} \\ 0, \frac{\pi}{w} < t < \frac{2\pi}{w} \end{bmatrix}$
b.	Using Laplace transform, evaluate the integral $\int_0^\infty \frac{e^{-2t}-e^{-4t}}{t} dt$

6. Attempt any *one* part of the following:

7*1 = 7

a.	Obtain the Fourier series for the function $f(x) = x \sin x$, $0 < x < 2\pi$.
b.	Solve the linear partial differential equation $\frac{\partial^2 z}{\partial x^2} - 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = sin(2x + 3y)$.

7. Attempt any *one* part of the following:

7*1 = 7

	$\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$, given that $u(x, 0) = 6e^{-3x}$.
b.	The temperature distribution in a bar of length π which is perfectly insulated at
	ends $x = 0$ and $x = \pi$ is governed by partial differential equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$.
	Assuming the initial temperature distribution as $u(x, 0) = f(x) = cos2x$. Find
	the temperature distribution at any instant of time.

Use the method of separation of variables to solve the equation