Subject Code: NAS203

Roll No:

BTECH

(SEM II) THEORY EXAMINATION 2021-22

ENGG MATHEMATICS-II

Time: 3 Hours

Notes:

- Attempt all Sections and assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

	ION-A Attempt All of the following Questions in briefMarks(10X2=20)		
	Find the particular integral of $(D^2 - 4)y = x^2$, where $D = d/dx$		
Q1(b)	Find the order and degree of the following differential equation		
	$\frac{d^2 y}{dx^2} + \sqrt{1 + \left(\frac{dy}{dx}\right)^2} = 0$		
Q1(c)	For a Legendre polynomial prove that $P_n(1)=1$ and $P_n(-1)=(-1)^n$.		
Q1(d)	Write the Dirichlet's conditions for Fourier series.		
Q1(e)	Prove that $L[e^{at}f(t)] = F(s-a)$.		
	Write the two dimensional wave equations.		
Q1(g)	Find the inverse Laplace transform of $\frac{s}{s^2+9}$.		
Q1(h)	Find the value of the Fourier coefficient a ₀ for the function		
	$f(x) = \begin{cases} 0, -\pi < x < 0 \\ x, 0 < x < \pi \end{cases}$		
01(i)	Classify the following partial differential equation along the line $y = x$:		
	$y u_{xx} + (x + y)u_{xy} + x u_{yy} = 0$		
01(i)	Show that: $J_{1/2}(x) = J_{-1/2}(x) \cot x$.		
X ⁻ ()			
SECT	TION-B Attempt ANY THREE of the following Questions Marks(3X10=30)		
Q2(a)	Solve the following simultaneous differential equations		
	$\frac{d^2x}{dt^2} + y = \sin t, \frac{d^2y}{dt^2} + x = \cos t,$		
Q2(b)	Obtain the Fourier series to represent $f(x) = \frac{1}{4}(\pi - x)^2$ in the interval $0 \le x \le 2\pi$. Hence		
	deduce that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \frac{\pi^2}{6}$ Find the series solution for the differential equation $(1 - x^2)y'' - 2xy' + 20y = 0$.		
Q2(c)	Find the series solution for the differential equation $(1 - x^2)y'' - 2xy' + 20y = 0$.		
	State Convolution theorem for the inverse Laplace transforms and hence evaluate		
	$L^{-1}\left\{\frac{1}{(s^2+a^2)^2}\right\}.$		
Q2(e)	A tightly stretched string with fixed end x=0 and x=1 is initially in a position given by		
	$y = a \sin \frac{\pi x}{l}$. If it is released from rest this position, find the displacement $y(x,t)$.		
SECT	TION-C Attempt ANY ONE following Question Marks (1X10=10)		

Q3(a)	$d^2 y$
	Solve by the method of variation of parameters: $\frac{a}{y} + 4y = \sec 2x$
	dx^2

Total Marks: 100

Subject Code: NAS203

Roll No:

BTECH

(SEM II) THEORY EXAMINATION 2021-22 ENGG MATHEMATICS-II

-2 -2 -		
Solve $x^2 \frac{d^3 y}{dx^3} + x \frac{d^2 y}{dx^2} + \frac{dy}{dx} = x^2 \log x$.		
	Marks (1X10=10)	
) is the Legendre's function.	
$2x^{2}\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} - (x+1)y = 0.$		
TION-C Attempt ANY ONE following Question	Marks (1X10=10)	
$\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 5x = e^{-t}\sin t, \text{ where } x(0) = 0 \text{ and } x'(0) = 1.$		
Express $f(t) = \begin{cases} 2t, & 0 < t \le \pi \\ 8, & t > 5 \end{cases}$ in terms of unit step function and hence obtain Laplace		
transform.		
	Marks (1X10=10)	
Solve the partial differential equation $(D^2 - D'^2 - 3D + 3D')z =$	$= xy + e^{x+2y}.$	
ION C Attempt ANV ONE following Question	Marks (1X10=10)	
$u_{xx} = u_y + 2u, \ u(0, y) = 0, \ u'(0, y) = 1 + e^{-3y}.$		
7(b) Solve the Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ in a rectangle in the <i>xy</i> -plane with		
u(x,0) = 0, u(x,b) = 0, u(0, y) = 0 and $u(a, y) = f(y)$ parallel to	o y-axis.	
209.5		
	ION-C Attempt ANY ONE following QuestionFind the Fourier series expansion of the periodic function $f(x)$ Solve the partial differential equation $(D^2 - D'^2 - 3D + 3D')z =$ ION-C Attempt ANY ONE following QuestionSolve the P.D.E. by separation of variables method, $u_{xx} = u_y + 2u$, $u(0, y) = 0$, $u'(0, y) = 1 + e^{-3y}$.	