

			Printed Page: 1 of 2									
					Subject Code: REE409)	
Roll No:												

BTECH (SEM IV) THEORY EXAMINATION 2021-22 ELECTRICAL MACHINES & CONTROLS

Time: 3 Hours Total Marks: 70

Notes:

• Attempt all Sections and assume any missing data.

• Appropriate marks are allotted to each question, answer accordingly.

SECTION-A		Attempt All of the following Questions in brief	Marks(7*2=14)						
Q1(a)	(a) Why are copper losses negligible during open circuit test on transformer?								
Q1(b)	What do you mean by 3-phase transformer groups?								
Q1(c)	Why starters are needed in DC motors? Name the starters used.								
Q1(d)	Explain how feedback affects Overall gain of the system?								
Q1(e)	Draw the polar plot for $G(s)H(s) = \frac{K}{s}$								
Q1(f)	Classify the following as open or closed loop system with valid reasons (i) An electrical								
	On-Off sv	vitch, (ii) Room air-conditioner.							
Q1(g)	What is th	e need of PID controller?							

SECT	ION-B	Attempt ANY THREE of the following Questions	Marks(3*7=21)
Q2(a)	Explain w	ith necessary diagrams how transformers can be used to conve	ert a 3-phase
	supply to	a 2-phase supply. If load is balanced on one side, show that it	will be balanced
	on other s	side.	1.
Q2(b)	Write Sho	ort Notes on the following:	6,
	i)	Two phase servomotor and its application	,0.
	ii)	Speed Control of 3-phase induction motor	OX
Q2(c)	Determine	e whether the following signal is periodic or not, is so find it's	period
		$x(t) = \cos t + \sin \sqrt{2} t$ $y(t) = 3 \sin t + 5 \cos \left(\frac{4}{3}t\right)$	V)
		() $()$ $()$ $()$ $()$ $()$ $()$ $()$	
		$y(t) = 3 \sin t + 5 \cos \left(\frac{1}{3}t\right)$	
Q2(d)	The open	loop transfer function of a unity feedback system is given by	
		(6)	
		$G(s) = \frac{4}{s(s+1)(s+5)}$	
	Sketch the	e polar plot and determine the gain margin and phase margin.	
Q2(e)	Using Bo	ode Plot Comment on the stability of the following unity fe	eedback open loop
	transfer fu	unction	
		C(a) = 50	
		$G(s) = \frac{50}{s(s+1)(s+2)}$	

SECT	ION-C	Attempt ANY	ONE of the	following Q	uestions	Marks (1*7=7)			
Q3(a)	(a) What is meant by the terms transformed volt-amperes and conducted volt-amperes in an								
	autotransformer? Show that two windings connected as an autotransformer will have								
	greater VA rating than when connected as a 2-winding transformer.								
Q3(b)	A 200KVA, 2000/440V, 50Hz 1-phase transformer gave the following results:								
	OC test(h	v)	2 kV	1.75 kW	1.8 A	_			
	SC test(lv)	13 V	1 kW	300A				
	Find (a) parameters of equivalent circuit as referred to h.v. side, (b) regulation and								
	efficiency at full-load, 0.8 p.f. lagging.								

Printed Page: 2 of 2 **Subject Code: REE409 Roll No:**

BTECH (SEM IV) THEORY EXAMINATION 2021-22 **ELECTRICAL MACHINES & CONTROLS**

SECT	ION-C	Attempt A	NY ONI	E of the f	ollowing Qเ	uestions	S		1	Marks (1*7=7)
Q4(a)	Describe 1	oriefly the	effect of	varying	excitation	upon a	armature	current	and pow	er factor of
	4									

a synchronous motor when input power to the motor is maintained constant.

Q4(b) A 3-phase 1500KVA, 6600V, star connected alternator having an armature resistance of 0.093 ohm per phase and a synchronous reactance of 8.5 ohm per phase. Find the voltage regulation at full load 0.8 p.f. lagging and 0.6 p.f. leading.

Attempt ANY ONE of the following Questions **SECTION-C** Marks (1*7=7)

Q5(a) Determine the overall transfer function of the following block diagram by using block diagram reduction technique.

Q5(b) Find the transfer function $X_2(s)/F(s)$ for the Mechanical translation system shown in figure.

SECT	ION-C	Attempt ANY ONE of the following Questions	Marks (1*7=7)
Q6(a)	The respo	nse of a system subjected to a unit step input is	
		$C(t)=1+0.2e^{-60t}-1.2 e^{-10t}$	
	Obtain the	e expression for the closed loop transfer function. Al	so determine the undamped
	natural fre	equency and damping ratio of the system.	
Q6(b)	Using Ro	uth's stability Criteria, determine the range of K for	open loop transfer function
		$G(s)H(s) = \frac{K}{s(s+1)(1+2s)}$	
		s(s+1)(1+2s)	

Q7(b) Give frequency domain specifications. Determine the expression for resonant peak and resonant frequency for a second order system.