

	Printed Page: 1 of 2											
						Subject Code: KCE402						
Roll No:												

BTECH (SEM IV) THEORY EXAMINATION 2021-22 INTRODUCTION TO SOLID MECHANICS

Time: 3 Hours Total Marks: 100

Notes:

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECT	ION-A	Attempt All of the following Questions in brief	Marks (10X2=20)	CO	
Q1(a)	Q1(a) Define stress and strain				
Q1(b)	State Hoo	k's law		1	
Q1(c)	Q1(c) Define point of contraflexure or point of inflexion.				
Q1(d)	Explain S	hear force and bending Moment		2	
Q1(e)	(e) What is section modulus (Z)? What is the value of Bending moment in terms of				
	section m	odulus?			
Q1(f)	Define Torsional Rigidity		3		
Q1(g)	What are the different methods of finding slope and deflection of cantilever			4	
Q1(h)	What do you understand by the term "Buckling" of columns		4		
Q1(i)	Write the relation between hoop stress and longitudinal stress for thin cylinder			5	
Q1(j)	What is the difference between thin and thick cylinder			5, 0	
				7	

SECT	ION-B	Attempt ANY THREE of the following Questions	Marks (3X10=30)	CO
Q2(a)	Explain th	ne stress-strain diagram for a ductile material under to	ension. A load of 5KN	1
	is to be ra	ised with the help of a steel wire. Find the diameter of	of steel wire, if the	
	maximum stress is not to exceed 100 MN/m ²			
Q2(b)	Derive the	e relation between shear force, bending moment and	loading	2
Q2(c)	A simply	supported rectangular beam with symmetrical section	n 200mm in depth has	3
	moment of inertia of 2.26 x 10 ⁻⁵ m ⁴ about its neutral axis. Determine the longest			
	span over which the beam would carry a uniformly distributed load of 4KN/m run			
	such that	the stress due to bending does not exceed 125 MN/m	2	
Q2(d)	A hollow	cylindrical column, with both ends hinged, is 6 m lo	ng, and has an outer	4
	diameter of	of 120 mm and an inner diameter of 80 mm. Calculat	e the crippling load	
	by Euler's	s and Rankine's formulae. $E = 80,000 \text{ N/mm}^2$ and σ_c	$= 550 \text{ N/mm}^2$. The	
	Rankine c	constant = $1/1600$		
Q2(e)	Derive the	e expression for hoop stress and longitudinal stress in	case of thin cylinder	5

SECT	ION-C	Attempt ANY O	NE following Que	estion	Marks (1X10=10)	CO
Q3(a)	The state	of stress at a poi	nt in a loaded co	mponent principa	l stress is found to be as	1
	given bel	ow: $\sigma_x = 50 \text{ GN}$	f/m^2 ; $\sigma_y = 150$ C	$3N/m^2$; $\tau_{xy} = 100$	GN/m ² ; Determine the	
	principal s	stresses and max	imum shearing st	tress. Find the original	entations of the principal	
	planes.		,6			
Q3(b)	A steel ba	ir is subjected to	loads as shown	in fig. Determine	the change in length of	1
	the bar Al	BCD of 18 cm di	ameter. $E = 180$	kN/mm ²		
		A I	3 <u>C</u>	$\stackrel{D}{\longrightarrow}$		
			,	0.131		
	50	0 kN 30 kN	4	0 kN ←		
				60 kN		
		300	310	310		
		mm	mm	mm		

Printed Page: 2 of 2
Subject Code: KCE402
Roll No:

BTECH (SEM IV) THEORY EXAMINATION 2021-22 INTRODUCTION TO SOLID MECHANICS

SECT	ION-C Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q5(a)	Derive the Torsional equation $T/J = \pi/R = G\theta/L$. Write the ass	umption made in	, 3
	deriving the torsional formulas?	6	
Q5(b)	The cross section of a beam is a T section of overall depth 14	0 mm, width of flange	3
	200mm, thickness of flange 40mm and thickness of web 20mr	n.Draw the shear stress	
	distribution diagram if it carries a shear force of 60 kN.	6.1	

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q6(a)	Derive the differential equation for the elastic curve. A cantilever beam is subjected			4
	to a concentrated load W at the free end, it is required to determine the maximum			
	deflection of the beam			
Q6(b)	Derive Eu	ler critical buckling load for columns with both the e	nds hinged. A steel rod	4
	5 m long a	and of 40 mm diameter is used as a column, with on	end fixed and the other	
	free. Dete	rmine the crippling load by Euler's formula. Take E	as 200 GPa	

		Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q7(a)	Q7(a) Write down the assumption in Lame's theory and also derive Lame's equation for			5
	circumferential stress and radial stress for thick cylinder			
Q7(b)	A composite spring has two close coiled helical springs connected in series, each		5	
	spring has 12 coils at a mean diameter of 25 mm. Find the diameter of the wire in one			
	of the springs if the diameter of the wire in the other spring is 2.5 mm and stiffness of			
	the composite spring is 700 N/m. Estimate the greatest load that can be carried by the			
	composite	spring for a maximum shearing stress of 180MPa.	Take G= 80 GPa	