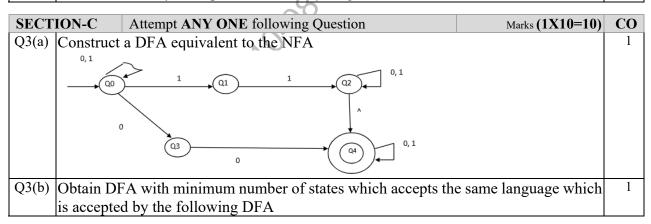


	Subject Code: RCS40						3403	ļ						
Roll No:														Ì

Printed Page: 1 of 2

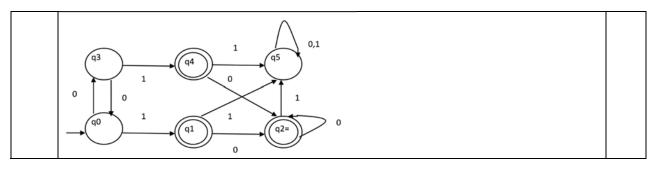
BTECH (SEM IV) THEORY EXAMINATION 2021-22 THEORY OF AUTOMATA AND FORMAL LANGUAGES


Time: 3 Hours Total Marks: 100

Notes:

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECT	ION-A	Attempt All of the following Questions in brief	Marks (10X2=20)	CO	
Q1(a)	What do yo	ou understand by ε- closure in FA?		1	
Q1(b)	What are	the applications of Finite automata?		1	
Q1(c)	State Klee	en theorem.		2	
Q1(d)	Give the r	regular expression for set of all strings such that num	ber of a's divisible by	2	
	3 over Σ =	=(a,b)			
Q1(e)	Remove n	null production from the grammar		3	
	$S \rightarrow aS/AI$	3			
	A-> ^				
	B-> ^				
	D-> b				
Q1(f)	What is G	reibach Normal Form?		3	
Q1(g)	Define De	eterministic PDA.		4	
Q1(h)	Explain two stack PDA.				
Q1(i)	Explain Church Thesis.				
Q1(j)	What are	the tuples of a Turing Machine?		5	


SECT	ION-B	Attempt ANY THREE of the following Questions	Marks (3X10=30)	CO
Q2(a)	Construct	a DFA accepting all strings w over {0, 1} such that	the number of 1's in w	1
	is 3 mod 4	1.		
Q2(b)	Design a mealy machine that accepts binary string divisible by 3.			
Q2(c)	Explain C	Chomsky hierarchy of languages.	X	3
Q2(d)	Obtain a 0	CFG that generates the language accepted (by final s	tate) by the NPDA	4
	with follo	wing transitions:		
	$\delta(q 0, a, a)$	$z) = \{(q 0, Az)\}$		
	$\delta (q 0, a,$	$A) = \{(q 0, A)\}$		
	$\delta (q 0, b,$	$A) = \{(q 1, \in)\}$		
	δ (q 1, \in ,	$z = \{(q 1, \epsilon)\}$		
	q 0 is the	initial state and q 1 is the final state.		
Q2(e)	What are	the ways of representations of Turing Machines?		5

Printed Page: 2 of 2
Subject Code: RCS403
Roll No:

BTECH (SEM IV) THEORY EXAMINATION 2021-22 THEORY OF AUTOMATA AND FORMAL LANGUAGES

SECTION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q4(a) Prove that	t L={ a ^p : p is prime } is not regular?		2
Q4(b) State and	prove Arden's theorem.		2

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q5(a)	Let G be a	grammar		3
	S→aB bA			
	A-> a aS I	DAA		
	B→b bS a	BB 6		7
	For string	aaabbabbba find		
	(a) Left Mo	ost Derivation	1	
	(b) Right N	Nost Derivation	Ġ	
	(c) Parse T	ree		
	(d) Is the g	rammar unambiguous?		
Q5(b)	Explain C	losure properties of Context free language.	, ' /	3

SECT	ION-C	Attempt ANY ONE following Question		Marks (1X10=10)	CO
	1			Marks (1 A10-10)	CO
Q6(a)	Construct Pushdown automata for the language			4	
	L: { wcw ^R w is in (a + b)*}.			X	
	Give instantaneous description of the input abcba.		4.0	X	
Q6(b)	Define and	Design 2-stack PDA for language	6/.		4
	$L = \{\{a^n b^n\}$	$c^n \mid n \ge 1$	2:0		

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q7(a)	Q7(a) Design transition diagram for the language $L = \{a^n b^n c^n n \ge 1\}$ using Turing			
	Machine. Give instantaneous description of the input aabbcc.			
Q7(b)	Write Short note on the following			5
	i) Universal Turing Machine			
	ii)	Post Correspondence problem		
	iii)	Halting problem of Turing machine		