

				Sub	ject	Coc	le: I	RCE	401
Roll No:									

Printed Page: 1 of 2

BTECH (SEM IV) THEORY EXAMINATION 2021-22 HYDRAULICS & HYDRAULIC MACHINES

Time: 3 Hours Total Marks: 70

Notes:

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECT	CTION-A Attempt All of the following Questions in brief Marks (7X2=					
Q1(a)	Q1(a) Define Rigid channel.					
Q1(b)	Q1(b) Give the classification of flow through open channel.					
Q1(c)	Q1(c) Write the condition of streaming flow.					
Q1(d)	(d) With neat sketch define Undular jump.					
Q1(e)	Write the components of a centrifugal pump.					
Q1(f)	f) What is reaction turbines?					
Q1(g)	Draw neat sketches of characteristic curve of turbine.					

SECT	ON-B Attempt ANY THREE of the following Questions	Marks (3X7=21)
Q2(a)	Differentiate between open channel flow and pipe flow.	
Q2(b)	A rectangular channel of 4 m is discharging 80m ³ /s of wate	r . Determine the critical depth
	and critical velocity of water flowing through the channel.	
Q2(c)	What do you understand by wave and write the types of wa	ves?
Q2(d)	A single-acting reciprocating pump, running at 50 r.p.m., d	lelivers 0.01 m ³ /s of water.
	The diameter of the piston of the piston is 200 mm and stro	ke length 400 mm. Determine
	the (i) Theoretical discharge of the pump (ii) Co-efficient of	of discharge (iii) slip and the
	percentage slip of the pump.	2,
Q2(e)	What is a hydraulic intensifier? Explain its working and pr	inciple.

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X7=7)
Q3(a)	Water is f	lowing in a channel of width 3 m with side slopes 1	:1, if the discharge through
	the chann	el is 4 m ³ /s and depth of flow is 1.4 m, find the spec	ific energy of water.
Q3(b)	Calculate	the critical depth of a triangular channel whose verte	ex angle of 12^0 .

	05-	/
SECTION-C	Attempt ANY ONE following Question	Marks (1X7=7)
Q4(a) Using cor	cept of specific energy, obtain for flow at a consta	nt specific energy in
rectangula	r channel, where q _c is the critical discharge	-
$\frac{q}{q_c}$	$= \sqrt{3\left(\frac{d}{d_c}\right)^2 - 2\left(\frac{d}{d_c}\right)^3}$	
	width of a trapezoidal section is 6 m and side slope	<u> </u>

Q4(b) The base width of a trapezoidal section is 6 m and side slopes are 2H: 1V. The depth of water is 2.5 m. Find the discharge through the channel using Chezy's constant C=50. Take the bed slope of the channel 1 in 1000.

SECTION-C		Attempt ANY ONE following Question	Marks (1 X7=7)				
Q5(a) Find the forces in x and y directions when jet strikes at the curved plate at one end							
	tangentially when the plate is symmetrical.						
Q5(b)	Find the e	xpression for depth of hydraulic jump in terms of up	stream Froude number.				

SECT	ION-C Attempt ANY ONE following Question	Marks (1 X7=7)						
Q6(a)	Q6(a) Differentiate between a single acting pump and double –acting reciprocating pump.							
Q6(b)	Q6(b) A centrifugal pump delivers water against a net head of 14.5 m and a design speed 1000							
	r.p.m. The vanes are curved back an angle of 30^{0} with the periphery. The impeller							
	diameter is 300 mm and outlet width is 50 mm. determine the	ne discharge of the pump if						

				Sub	ject	Coc	de: I	RCE	2401	
Roll No:										

Printed Page: 2 of 2

BTECH (SEM IV) THEORY EXAMINATION 2021-22 HYDRAULICS & HYDRAULIC MACHINES

	manometr	ic efficiency is 95%.						
SECT	ION-C	Attempt ANY ONE following Question	Marks (1X7=7)					
Q7(a)	Q7(a) Two jet strike the buckets of a pelton wheel, which having shaft power as 15450 kW.							
	The diameter of each jet is given as 200 mm. If the net head on the turbine is 400m. Find							
	overall efficiency of the turbine, Take $C_v = 1.0$.							
Q7(b)	Q7(b) Describe briefly the functions of various main components of Pelton turbine with neat							
	sketches							

OP22EP2 068
OP22EP2 068
No.08-2022 13:39:41 115:240:61.118