

				Sub	ject	Coc	le: F	CE	403
Roll No:									

Printed Page: 1 of 2

BTECH (SEM IV) THEORY EXAMINATION 2021-22 HYDRAULIC ENGINEERING AND MACHINES

Time: 3 Hours Total Marks: 100

Notes:

• Attempt all Sections and Assume any missing data.

• Appropriate marks are allotted to each question, answer accordingly.

SECT	ION-A	Attempt All of the following Questions in brief	Marks (10 X2=20)	CO		
Q1(a)	Q1(a) Define specific energy and total energy.					
Q1(b)	Distinguis	sh between pipe flow and open channel flow.		1		
Q1(c) Distinguish between most economical and most efficient channel.						
Q1(d)	Explain G	VF.		2		
Q1(e)	Explain hy	ydraulic jump with the help of a diagram.		3		
Q1(f)	1(f) Define surges in open channel.					
Q1(g)	Explain S ₁	peed ratio and Jet ratio of a Pelton turbine.		4		
Q1(h)	Define pu	mps.		4		
Q1(i)	Define rea	action turbine with the help of a suitable example.		5		
Q1(j)	Define spe	ecific speed of a turbine.		5		

SECTION-B		Attempt	npt ANY THREE of the following Questions		Marks (3X10=30)	CO	
Q2(a) Illustrate the condition un		tion under whi	nder which the rectangular and triangular section of an open				
	channel is most economical and derive these conditions.						
Q2(b)	Explain a			iles produced on		1	2
	i. Mild Slo	ope ii	Steep Slope	iii. Critical Slop	e	Ć (•
Q2(c)	A hydraul	lic jump	s occurring in	a rectangular chai	nnel of 3 m	width, discharge is 7.8	3
	m^3/s and σ	depth bef	ore the jump is	s 0.28 m. Calculat	e:	a DX	
	i. Sequent	t Depth					
	ii. Energy	loss dur	ing the jump	V		V.O.,	
Q2(d)	Illustrate of	centrifug	al pump? Desc	ribe the principle	and workin	g of a centrifugal pump	4
	with a nea	at sketch.		_			
Q2(e)	Illustrate 1	the pheno	omenon of cavi	itation? What is it	s effect on	turbine? How it can be	5
	avoided?	-			4.		

SECTION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO	
	Explain the concept of specific energy depth curve and prove the critical flow condition for all types of channels.			
width. Th energy of	A flow of 5 m ³ /s is passing at a depth of 1.5 m through a rectangular channel of 2.5 m width. The kinetic energy correction factor α is found to be 1.20. What is the specific energy of the flow? What is the value of the depth alternate to the existing depth if a 1.0 is assumed for the alternate flow?			

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q4(a) A rectangular channel has a width of 2 m and carries a discharge		rge of 4.8 m ³ / sec with	2	
	a depth of 1.6 m. At a certain section a small smooth hump with a flat top and of height			
	0.5 m is proposed to be built. Neglect energy loss.			
	i. Calculate the water surface elevation on the hump.			
	ii. Calcula	ate the minimum size of hump to cause critical flow	over the hump.	
Q4(b)	A rectang	ular channel is 3.5 m wide and conveys a discharge of	of 15 m ³ /s at a depth of	2
	2 m. It is	s proposed to reduce the width of the channel at	a hydraulic structure.	
	Assuming	the transition to be horizontal and the flow to be fric	ctionless, determine the	
	water sur	face elevation upstream and downstream of the	constriction when the	
	constricte	d width is: (i) 2.5 m, (ii) 2.2 m.		

PAPER ID-421619	

				Sub	ject	Coc	le: F	CE	<u> 403</u>
Roll No:									

Printed Page: 2 of 2

BTECH (SEM IV) THEORY EXAMINATION 2021-22 HYDRAULIC ENGINEERING AND MACHINES

SECT	ION-C Attempt ANY ONE following Question	Marks (1X10=10)	CO		
Q5(a)	Derive an expression for sequent depth ratio and energy loss	ssion for sequent depth ratio and energy loss in a hydraulic jump for a			
	rectangular channel.				
Q5(b)	A horizontal rectangular channel 4 m wide carries a discharge of 16m ³ /s. Determine				
	whether a jump may occur at an initial depth of 0.5 m or not. If a jump occurs,				
	determine the sequent depth to this initial depth. Also determine the energy loss in the				
	jump.	-			

SECT	ION-C	Attempt ANY ONE following Question Marks (1X10=10)				
Q6(a)	6(a) Explain in detail the working of a reciprocating pump with		the help of a suitable	4		
	diagram.					
Q6(b)	A nozzle	of 50 mm diameter delivers a stream of water at 20	m/s perpendicular to a	4		
	plate that	moves away from the jet at 5 m/s. Calculate:				
	i. Force o	n the plate				
	ii. Work done					
	iii. Efficie	ncy of the jet				

SECTION-C	Attempt ANY ONE following Question	Marks (1X10=10) CO
Q7(a) Illustra	te draft tubes and its types with the help of a suitable	diagram. Prove that the 5
pressu	e at the inlet of the draft tube is less than atmospheric	pressure.
Q7(b) A Pelto	on wheel is to be designed for the following specification	on. Shaft Power = 11722 5
KW, E	ead = 380 m, Speed = 750 rpm, Overall Efficiency = 8	6%, Jet diameter (d) not
to exce	ed one-sixth of wheel diameter (D). Determine:	
	el diameter	
ii. No.	of Jets required	
	meter of Jets.	1 0.
	$L_{V1} = 0.985$ and $Ku_1 = 0.45$.	
		. \
		5
	1.	
		•
	γ, 5.	
	0.08.2022	
	200	