SECTION A		
Attempt all questions in brief.		
	a.	What is Detection
	b.	Write different components of Decision theory.
	c.	Write down the KLE to represent a random process?
	d.	When is Bayes' criterion applied?

What is Estimation? e.

f. What are the different levels of detection?

Write any two properties of Optimum processors. g.

Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION B

2. Attempt any *three* of the following:

- Derive LRT when a priori probabilities are known, and cost assignment can be done. a.
- b. Explain Cramer-Rao bound on error variance?

Explain Sequential detection? c.

Design LRT for General Gaussian Problem? d.

What is multiple parameter estimation? e.

SECTION C

Attempt any one part of the following: 3.

- If $p(r/H_0) = rect (r-0.5) \& p(r/H_1) = 0.5(r-1)$. a.
- Find the decision rule when $P_f=0.6$. Calculate P_d for given P_f

b. Explain MAP estimation.

4. Attempt any one part of the following:

a. Write down Receiver Operating characteristics.

Explain Optimum realizable filter. b.

5. Attempt any one part of the following:

- If $H_1: Y_K = S_K + N_K$, K=1,2 a.
 - And $H_0: Y_K = N_K, K = 1, 2$
 - Noise components have zero mean and variance σ_n^2 and signal components have zero
- mean and variance σ_s^2 obtain the optimum decision rule, $P_d \& P_f$.
- Derive the lower bound on the mean square estimation error of continuous waveform. b.

Attempt any one part of the following: 6.

Design the LRT for composite hypothesis. a.

b. Explain Kalman-Bucky filter.

7. Attempt any *one* part of the following:

7*1 = 7

- a. Explain coherent detection in presence of white noise.
- b. Discuss Nonrandom parameter estimation.

Printed Page: 1 of 1 Subject Code: MTEC202

Roll No:

MTECH (SEM II) THEORY EXAMINATION 2021-22 **DETECTION AND ESTIMATIONTHEORY**

2*7 = 14

Total Marks: 70

Time: 3 Hours

1.

7*3 = 21

7*1 = 7

7*1 = 7

7*1 = 7

7*1 = 7