

				Sub	ject	Coc	le: K	CA	205)
Roll No:										

MCA (SEM II) THEORY EXAMINATION 2021-22 DATA STRUCTURES & ANALYSIS OF ALGORITHMS

Time: 3 Hours Total Marks: 100

Note: Attempt all Sections. If you require any missing data, then choose suitably.

SECTION A

1. Attempt all questions in brief.

2*10 = 20

Printed Page: 1 of 2

Qno	Questions	CO
(a)	Discuss the limitation of arrays.	1
(b)	Give applications of linked list.	1
(c)	Convert following infix expression into postfix expression: $A + (B*C + D)/E$.	2
(d)	What are the 3 different ways in which priority queue can be implemented?	2
(e)	Can we apply binary search on unsorted array?	3
(f)	Give an example to demonstrate insertion sort.	3
(g)	Draw the expression tree/2-Tree of following arithmetic expression: $(2 * (4 + (5 + 3)))$.	4
(h)	What are threaded binary tree?	4 1
(i)	How the graph can be traversed using Breadth First Search (BFS)?	5
(j)	Discuss Strassen's algorithm for matrix multiplication.	C 5

SECTION B

2. Attempt any three of the following:

10*3 = 30

Qno	Questions	CO
(a)	What is doubly linked list? Write a function to traverse a doubly linked	1
	list in reverse order.	
(b)	Write a function or algorithm to implement enqueue and deque	2
	operations on circular queue.	
(c)	Use heap sort algorithm to sort the following sequence: {8, 5, 45, 24,	3
	36, 11, 43, 21}. What is the time complexity of the algorithm?	
(d)	Draw B-Tree of order 3 by inserting following keys in empty tree:	4
	{78, 52, 81, 40, 33, 90, 85, 20, 38}.	
(e)	Discuss Longest Common Subsequence (LCS) problem solution by	5
	using dynamic programming. Give example.	

SECTION C

3. Attempt any *one* part of the following:

10*1 = 10

Qno	Questions	CO
(a)	Write a function or algorithm to add two Polynomials using linked list.	1
(b)	Define header linked list. Write a function to perform insertion at end	1
	in a singly linked list.	

Roll No: Subject Code: KCA205

MCA (SEM II) THEORY EXAMINATION 2021-22 DATA STRUCTURES & ANALYSIS OF ALGORITHMS

4. Attempt any *one* part of the following:

1(0 *1	1 =	10
	,	_	

Printed Page: 2 of 2

Qno	Questions	CO
(a)	What is Tower of Hanoi problem? Explain the solutions of Tower of	2
	Hanoi problem using recursion where number of disks n= 3 and	
	towers are A, B and C.	
(b)	What do you understand by hashing? Consider Inserting the keys	2
	{76, 26, 37, 59, 21, 65, 88} into a Hash table of size m =11. Using	
	linear Probing, consider the primary hash function is $h'(k) = k \mod m$.	

5. Attempt any *one* part of the following:

10*1 = 10

Qno	Questions	CO
(a)	Perform Quick sort on the following data items stored in single	3
	dimensional array: {6, 9, 5, 8, 7, 4,3, 1, 2, 0}. Also discuss its time	
	complexity.	
(b)	Discuss the function to implement merge sort. What is the time and	3
	space complexity of the algorithm?	

6. Attempt any one part of the following:

$$10*1 = 10$$

Qno	Questions	CO
(a)	How BST is different from sorted array? Discuss the process to find an	4
	element in BST?	
(b)	Insert the following element in empty AVL tree:	4
	{45, 55, 65, 75, 80, 90, 100, 110, 120, 130, 40, 35, 25, 20, 15, 10, 5}.	

7. Attempt any *one* part of the following:

10*1 = 10

Qno	Questions	CO
(a)	What is minimum spanning tree (MST)? Draw MST of the following graph by applying Kruskal's algorithm.	5
	A 5 E B 3 C 4 D	
(b)	For the given graph (weighted, directed) apply Floyd-Warshall algorithm for constructing shortest path.	5
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	