

				Sub	ject	Cod	e: R	ME	403
Roll No:									

Printed Page: 1 of 2

BTECH (SEM IV) THEORY EXAMINATION 2021-22 APPLIED THERMODYNAMICS

Time: 3 Hours Total Marks: 70

Notes:

• Attempt all Sections and Assume any missing data.

• Appropriate marks are allotted to each question, answer accordingly.

SECTION-A		Attempt All of the following Questions in brief	Marks (7 X2=14)			
Q1(a)	What do y	you mean by air standard cycles? Discuss its significa	ance.			
Q1(b)	State the o	comparison between Jet and Surface condenser.				
Q1(c)	Write the	difference between the Otto cycle and the Diesel cyc	ele.			
Q1(d)	How equi	valent evaporation is used for the comparison of boil	ers?			
Q1(e)	What do you mean by thrust augmentation?					
Q1(f)	What is choked flow?					
Q1(g)	g) Explain the significance of choked flow in a nozzle.					

CECT	TON D	Attack ANN THREE of the Callering Operations	V : (2V7_21)				
	ION-B	Attempt ANY THREE of the following Questions	Marks (3X7=21)				
Q2(a)	(2(a) An IC engine working on a diesel cycle has a bore diameter of 150 mm and						
	of 260 mr	n respectively. If clearance volume is 0.0004 m³ and	fuel injection takes place at				
	constant p	pressure for 5% of the stroke. Determine the thermal	efficiency of the engine.				
Q2(b)		l Rankine cycle, the saturated steam enters the turbin					
	and exits	from the condenser as a saturated liquid at a pressure	of 0.008 MPa. The net				
		put of the cycle is 100 MW. Determine: (i) the therm					
	(ii) the W	ork ratio, and (iii) the mass flow rate of the steam in	kg/h.				
Q2(c)	What are	the essentials of a good boiler? Differentiate between	n mounting and accessories.				
	Explain th	ne working at least one of each.	, 1/3				
Q2(d)	Explain th	ne principle of working of steam impulse turbine. Exp	plain the need for				
	compound	ling in a steam turbine. Also, describe the pressure-v	elocity compounding with a				
	neat diagr	am.					
Q2(e)	Explain th	ne Brayton cycle with P-V and T-S diagram and obta	in an expression for				
	efficiency	in terms of pressure and temp ratio.					

		02+					
SECT	ION-C	Attempt ANY ONE following Question	Marks (1 X7=7)				
Q3(a)	Explain th	e Otto cycle with P-V and T-S diagram. Derive an	expression for air standard				
	efficiency	of Otto cycle in terms of compression ratio.					
Q3(b)	A four-cy	linder petrol engine working on a two-stroke cycle d	evelops 30 kW at 2600 rpm.				
	The mean	effective pressure on each piston is found to be 8 ba	each piston is found to be 8 bar. The calorific value of the				
	fuel used	is 44000 kJ/kg and brake thermal efficiency is 29%.	Calculate the fuel				
	consumpt	on of the engine. Further determine the bore and stroke of each cylinder, If the					
	stroke to b	pore ratio is 1.5. The mechanical is 80.8%.					

SECTION-C		Attempt ANY ONE following Question	Marks (1X7=7)			
Q4(a) What is the		e advantage of the combined cycle? Briefly discuss	different types of combined			
	cycles.					
Q4(b)	The volun	netric composition of the dry products of combustion	n of an unknown			
	hydrocarb	on fuel $C_x H_y$ gives: $CO_2 = 12.1\%$, $O_2 = 3.8\%$, $CO =$	0.9% , and $N_2 = 83.2\%$.			
	Determine	e: (i) the Chemical composition of the fuel, (ii) The a	ir-fuel ratio, and (iii) the			
	Percentag	e of excess air used.				

				Sub	ject	Cod	le: R	RME	403
Roll No:									

Printed Page: 2 of 2

BTECH (SEM IV) THEORY EXAMINATION 2021-22 APPLIED THERMODYNAMICS

SECTION-C		Attempt ANY ONE following Question	Marks (1X7=7)				
Q5(a)	A boiler g	enerates 7.5 kg of steam per kg of coal burnt at a pro-	essure of 11 bar form of feed				
	water hav	ing a temperature of 70°C. The efficiency of the bo	iler is 75% and the factor of				
	evaporation	on is 1.15. The specific heat of steam at constant pres	ssure is 2.3 KJ/kgK.				
	Calculate	:					
	(D Degre	e of superheating and temperature of the steam gene	rated				
	(ii) Calor	ific value of coal in kJ/kg					
	(iii) Equi	valent evaporation in kg of steam per kg of coal					
Q5(b)	What is the function of a condenser? Give the classification of the condenser and also						
	explain the Barometric jet condenser with a neat sketch?						

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X7=7)
Q6(a)	What is a	convergent-divergent nozzle? Derive the condition and expression	on for maximum
	discharge	through a nozzle.	
Q6(b)	The follow	wing data belong to a single stage of Parson's steam turbine consi	sting of one ring
		lade and one ring of moving blades: Average diameter of blade rin	· 1
	of turbine	e = 3000rpm, the Steam velocity at the exit from blades = 160 m/	sec, Blade outlet
	angle = 20	0° , the Steam flow rate through blades = 7 kg/sec. Draw the velocity	city diagram and
	find (i) b	plade angle at the inlet (ii) tangential force on the moving bl	ades (iii) power
	developed	d in a stage.	6

SECTION-C Attempt ANY ONE following Question (1X7=7) Q7(a) A simple gas turbine admits air at atmospheric pressure (1.013 bar) and 15°C and compresses air in the compressor up to 16 bar. Then, air enters the combustion chamber and is heated to a maximum temperature of 1350°C, further it enters the turbine and expands to the atmospheric pressure. The isentropic efficiency of the compressor and turbine is 85% each. Take combustion efficiency at 98%, drop of the pressure through the combustion chamber is 0.3 bar, specific heat at constant pressure for both air and gases is 1.005 kJ/kgK and the ratio of specific heats is 1.4. Determine the flow rate of air and gases for a net power of 200 MW. Neglect the mass of fuel. Q7(b) Explain the working of the jet propulsion system and compare the working of Ram jet with Pulse jet engines.