

			Subject Code: KEE401								401
Roll No:											

Printed Page: 1 of 2

BTECH (SEM IV) THEORY EXAMINATION 2021-22 DIGITAL ELECTRONICS

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt *all* questions in brief. 2*10 = 20

Q no.	Question	СО
a.	Identify the value of x in the expression $(56.1A)_{16} = (x)_8$.	1
b.	Perform the subtraction (101101-100110) ₂ using 2's complement method.	1
c.	Compare serial adder and parallel adder.	2
d.	What is difference between combinational and sequential circuits.	2
e.	The content of 4 bit register is initially 1101. The register is sifted six time to right with the serial input being 101101. What is the content of the register after sixth shift?	3
f.	If in an edge triggered JK flip flop, J=1, K=1 and Q=1, when the clock pulse goes HIGH, what would be the next sate of Q.	3
g.	Define critical race and non-critical race conditions.	4
h.	Differentiate synchronous and asynchronous sequential circuits.	4
i.	Write the advantage and disadvantages of TTL and CMOS logic family	5
j.	Explain fan-in and fan-out in logic families.	5

SECTION B

2. Attempt any *three* of the following: 10*3 = 30

	. 77 5							
Q no.	Question	СО						
a.	Simplify the following Boolean function using K-map and also draw the	1						
	simplified logic circuit using basic logic gates.							
	$f(A,B,C,D) = \sum_{m} (0,1,5,6,12,13,14) + d(2,4)$							
b.	Implement the function $Y(A, B, C, D) = \sum_{m} (0,1,2,5,8,13,14)$ using 8:1	2						
	multiplexer. Consider A, B, C as the select lines.							
c.	Differentiate between synchronous and asynchronous counters. Design a 2	3						
	bit synchronous UP counter.							
d.	An asynchronous sequential circuit with two excitation function with two	4						
	feedback loop is given as: $Y_1 = xy_1 + \overline{x}y_2$; $Y_2 = x\overline{y}_1 + \overline{x}y_2$							
	(i) Draw the logic diagram of the circuit.							
	(ii) Derive the transition table & obtain the flow table							
e.	Differentiate RAM and ROM. Explain various types of ROM.	5						

SECTION C

3. Attempt any *one* part of the following:

10*1 = 10

Q no.	Question	СО
a.	Explain Error detecting and Error correcting codes. A seven-bit Hamming code coming out of a transmission line is 1000010. What was the original code transmitted? Consider the even parity check.	
b.	Express the design of Ex-OR gate with the help of (i) NAND gates only and (ii) NOR gates only	1

	Subject Code: KEE40							2401						
Roll No:														

Printed Page: 2 of 2

BTECH (SEM IV) THEORY EXAMINATION 2021-22 DIGITAL ELECTRONICS

4.	A	tempt any <i>one</i> part of the following: 10*1 =	- 10
ĺ	Q no.	Question	CO
•	a.	Explain the design of a Full adder, with its truth table and Boolean expression.	2
	b.	Design a Binary Code to Gray code Converter, Also show its truth table, Boolean expression and logic diagram.	2

5.	\mathbf{A}_{1}	ttempt any <i>one</i> part of the following: $10*1 =$	10						
	Q no.	Question	CO						
	a.	Discuss the Race around condition of JK flip flop. How JK flip-flop can be	3						
		used as T flip-flop, Explain the design procedure.							
	b.	Analyze RS flip –flop using NAND-NAND logic and obtain its characteristic equation and excitation table. Explain how will you convert it in D Flip-flop.							

Attempt any one part of the following: 10*1 = 10Q no. Question Implement the circuit defined by the following transition table with a NOR a. SR Latch. Also show the implementation with NAND SR latch. x_1x_2 01 11 10 0 $\mathbf{0}$ 1 0 1 1 1 0 Write the design procedure for clocked sequential circuits and implement **b**. the following state diagram. 00 01 0/0

7.	A	ttempt any <i>one</i> part of the following: 10*1	1 = 10
	Q no.	Question	CO
	a.	Explain PLA and PAL. Implement the given Boolean function with a PLA.	5
		$Y_1(A,B,C) = \sum_{m} (4,5,7); \qquad Y_2(A,B,C) = \sum_{m} (3,5,7)$	
	b.	Construct the following logic gates from NMOS and PMOS logic Families	5
		(i) NAND (ii) NOR	