

MCA

(SEM II) THEORY EXAMINATION 2023-24

DATA STRUCTURES & ANALYSIS OF ALGORITHMS

TIME: 3 HRS

M.MARKS: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

1	SECTION A	2 x 10	- 20	
Q no.	Attempt all questions in brief. Question	Z X IU Marks	<u>- 20</u> CO	I
a.	Define algorithm. Give its characteristics.	02	1	
b.	What is header linked list?	02	1	
c.	Define recursion.	02	2	ł
d.	What is priority queue?	02	2	ł
e.	Traverse a given tree in Pre-order traversal.	02	3	0.24
f. g.	C E H Define Threaded binary tree. Define fully connected graph.	02 02	N N N	
h.	What is weighted graph?	02	4	ĺ
i.	Apply Quick sort algorithm on the string : D, E, L, H, I	02	5	
j.	What is minimum spanning tree (MST)?	02	5]
2	SECTION B	3 v 10	= 30	

SECTION B

2.	Attempt any <i>three</i> of the following:	3 x 10	= 30
Q no.	Question	Marks	CO
a.	How polynomials can be represented using linked list? Write a function/algorithm to add two polynomials.	10	1
b.	What is hashing? How can we define hash function?	10	2
c.	Define binary search tree. Create a binary search tree by inserting following keys: 9, 2, 3, 4, 5, 6, 8, 1, 7, 0		3
d.	What is the divide and conquer problem solving strategy? How binary search algorithm follows this approach?	10	4
e.	Given two strings, find the Longest Common Subsequence (LCS), present in both of the strings. String-1=ASDFGHJK String-2=SHJLU	10	5

SECTION C

3. Attempt any one part of the following:

1 x 10	= 10
Morka	CO

•••	The second	1 11 10	1 0
Q no.	Question	Marks	CO
a.	Define linked list. Write a function in C to create a singly linked list.	10	1
b.	What is sparse matrix? How it can be represented using header linked	10	1
	list.		

MCA (SEM II) THEORY EXAMINATION 2023-24 DATA STRUCTURES & ANALYSIS OF ALGORITHMS

TIME: 3 HRS

M.MARKS: 100

<u>4</u> .	Attempt any one part of the following:	1 x 10	= 10
Q no.	Question	Marks	CO
a.	Give applications of stack. Write an algorithm to evaluate postfix expression.	10	2
b.	Define linear queue. Write a program or algorithm to implement linear queue.	10	2

5.	Attempt any one part of the following:	1 x 10	= 10
Q no	Question	Marks	CO
a.	Define AVL tree. Demonstrate LL, RR, LR, RL rotations of AVL tree	10	3
	with suitable examples.		
b.	Write the properties of B-Tree. Insert the following keys in a B-Tree of	10	3
	order 3: 98, 76, 54, 32, 12, 34, 56, 78, 95, 48		

		-	-
	with suitable examples.		
b.	Write the properties of B-Tree. Insert the following keys in a B-Tree of	10	3
	order 3: 98, 76, 54, 32, 12, 34, 56, 78, 95, 48		
		<u>I</u>	
.	Attempt any <i>one</i> part of the following:	1 x 10	= 10
Q no.	Question	Marks	CO
a.	What is breadth first search (BFS) algorithm for traversing a graph?	10	4 0
	Apply BFS in the given graph, assuming vertex A as starting vertex.		KK
		3.24	
b.	Differentiate between Graph and Tree. Give adjacency matrix representation of the following graph.	10	4

7.	Attempt any <i>one</i> part of the following:		
Q no.	Question	Marks	CO
a.	Write a program in C to implement merge sort. Give its time and space complexity.	10	5
b.	Find the shortest paths from the source to all the other vertices in the given graph using Dijkstra's algorithm. Assume source vertex as S. $\begin{array}{c} & & \\ & $	10	5