

				Sui	ojeci	t Co	ae: 1	BAS	402
Roll No:									

BTECH (SEM IV) THEORY EXAMINATION 2023-24 **MATHEMATICS –III**

TIME: 3 HRS **M.MARKS: 70**

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

Attempt all questions in brief. 1.

 $2 \times 7 = 14$

Printed Page: 1 of 2

Q no.	Question	Marks	CO	
a.	Find the complimentary function of $(D^3-4D^2D'+3DD'^2)z = 0$.	2	1	
b.	Write auxiliary equation of $yq-xp = z$.	2	1	
c.	Classify the equation $\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} = c^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2}$.	2	2	
d.	Write moment about mean.	2	3	
e.	What is mean, median and mode of a normal distribution?	2	3	
f.	What is nth divided difference of a polynomial of degree n?	2	4	
g.	Find the value of $\int_2^6 x^3 dx$ by Simpson's rule.	2	5	S
	SECTION B		, 1	3.2 lx
2.	Attempt any three of the following:	7 x 3 =	21	
Q no.	Question	Marks	CO	
	2 2 2	-		

Attempt any three of the following: 2.

Q no.			(Question				Marks	CO				
a.	Solve (D ² +D	0	7	1									
b.	A string is st		7	2									
	by displacing	g the strin	g in form y	$y=a \sin \frac{\pi x}{1}$	from whicl	n it is relea	ased at a						
	time t=0. show that, $y(x,t) = a \sin \frac{\pi x}{l} \cdot \cos \frac{\pi ct}{l}$.												
c.	The probabil	lity that a	bomb drop	ed from a	plane will	strike the	target is	7	3				
	1/5.If the six				•	that							
		•	o will strike	_									
	ii) A	t least two	o will strike	e the target	<u> </u>	*							
d.	Develop the	divided d	ifference ta	ble from th	ne data giv	en below a	nd	7	4				
	obtain the in	terpolation	n polynomi	al.	X								
	X	2	4	60	8	10							
	f(x)	6	10	18	22	30							
e.	Test the follo	owing sys	tem of equa	ations is dia	agonally do	ominant an	d hence	7	5				
	solve this sy	stem using	g Gauss-Se	idel metho	d:								
	$2\mathbf{v} + \mathbf{v} + 4\mathbf{z}$	-7 3v	27 - 6	5 v 1v	. 27 – 5								
	2x + y + 4z	= 1, 3X	y + 2z = 0	2x + y + 4z = 7, $3x + y + 2z = 6$, $-x + 4y + 2z = 5$.									

SECTION C

3. Attempt any *one* part of the following:

 $7 \times 1 = 7$

Q no.	Question	Marks	CO
a.	Solve $(y+z)p-(x+z)q = x-y$.	7	1

				Sul	oject	t Co	de: 1	BAS	402
Roll No:									

BTECH (SEM IV) THEORY EXAMINATION 2023-24 MATHEMATICS –III

TIME: 3 HRS M.MARKS: 70

b	Solve $(D^2-DD')z = \sin x \cos 2y$.	7	1

4. Attempt any *one* part of the following:

$7 \times 1 = 7$

Printed Page: 2 of 2

Q no.	Question	Marks	CO
a.	Solve by method of variation of variables $y^3 \frac{\partial u}{\partial x} = x^2 \frac{\partial u}{\partial y}$.	7	2
b.	Find Fourier sine and cosine transform of x ⁿ⁻¹ .	7	2

5. Attempt any *one* part of the following:

$7 \times 1 = 7$

Q no.	Question	Marks	CO
a.	A sample of 100 dry battery cells tested to find the length of life	7	3
	produced the following results $\overline{x} = 12$ hours, $\sigma = 3$ hours.		
	Assuming the data to be normally distributed, what percentage of battery		
	cells are expected to have life.		
	(i) More than 15 hours (ii) less than 6 hours (iii) between 10 and		
	14 hours.		(Ω)
	(Given area at $z = 1$ is 0.3413, $z = 2$ is 0.4772 and $z = 0.67$ is 0.2485)		
b.	Out of 8000 graduates in a town, 800 are females, out of 1600 graduate	7 NO	3
	employees, 120 are females. Use χ^2 –test to determine if any distinction	9,4	
	is made in appointment on the basis of sex. The value of χ^2 for 1 degree	5.0	
	of freedom at 5% level is 3.841.		

6. Attempt any *one* part of the following:

$7 \times 1 = 7$

Q no.		Marks	CO								
a.		Using Lagrange's interpolation formula, find the values of y corresponding to x=10 from the following table:									
		X	5	6	19	11					
		y	12	13	14	16					
b.	Using x ³ - 4x	_	Falsi method,	, compute the	real root of th	ne equation		7	4		

7. Attempt any *one* part of the following:

$7 \times 1 = 7$

Q no.	Question	Marks	CO
a.	Using Picard's method find a solution of $\frac{dy}{dx} = 1 + xy$, upto third approximation, when $x_0 = 0$, $y_0 = 0$.	7	5
b.	Use Runge-Kutta method of fourth order to approximate y when $x = 0.1$ given that $y = 1$ at $x=0$ and $\frac{dy}{dx} = 3x+y^2$.	7	5