

MBA

Roll No:

(SEM II) THEORY EXAMINATION 2023-24 QUANTITATIVE TECHNIQUES FOR MANAGERS

TIME: 3 HRS

M.MARKS: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably. **SECTION A**

1. Attempt *all* questions in brief.

 $2 \ge 10 = 20$

Q no.			Marks	CO			
a.	Explain the impor		02	1			
b.	A decision-make Investment B, an different market payoff matrix. Ap the decision-make	02	1				
	Investment A	100	50	-20			
	Investment B	80 120	60 20	40 -30			
	Investment C						
c.		nced transportation	· // \			02	2
d.	Write the dual of Maximize $Z=3x1$ STC $2x1+3x2 \le 8$ $4x1+x2 \le 7$ & $x1, x2 \ge 0$	82 82	02	20			
e.		-	-	a mixed strategy	game.	02	3
f.		ation case in Assig		- Cla		02	3
g.	Students arrive at to a Poisson input to serve a student Assume that the s waiting time of a	luired hour.	02	4			
h.	Explain the Proce		ough m machines			02	4
i.	Explain significar					02	5
i	Discuss the signif	ficance of merge a	nd hurst events			02	5

SECTION B

2. Attempt any *three* of the following:

$3 \times 10 = 30$

a.	What is decision theory. Outline various types of decision-making	10	1
	environment.		
b.	Solve the following LPP by graphical method.	10	2
	Minimize Z = 20x1 + 10x2		
	STC		
	$x1+2x2 \le 40$		
	$3x1+x2 \ge 30$		
	$4x1+3x2 \ge 60$		
	&		

PAPER ID-410980

Roll No:

MBA (SEM II) THEORY EXAMINATION 2023-24 QUANTITATIVE TECHNIQUES FOR MANAGERS

TIME: 3 HRS

M.MARKS: 100

	$x1, x2 \ge 0$								
c.	There are	five jobs to	o be assign	ed, one eac	ch to five	machines an	d the	10	3
	associated c	ost matrix i	s as follows	. Solve this	minimal as	signment pro	blem.		
	Job	1	2	3	4	5			
	Α	11	17	8	16	20			
	В	9	7	12	6	15			
	С	13	16	15	12	16			
	D	21	24	17	28	26			
	Ε	14	10	12	11	15			
d.	Explain the	e concept o	f a queuing	and discus	s the key	components.	Also	10	4
	provide exa	mples of re	al-world app	olications wh	nere queuin	ng theory is u	tilized		
	to optimize	efficiency a	ind customer	r satisfactior	ı.				
e.	Draw the ne	twork and f	ind the critic	al path and t	the critical	time from the	given	10	5
	data								
	Jobs	1-2	1-3 2-4	3-4 3-5	4-5 4	4-6 5-6			
	Duration	(in 6	5 10	3 4	0 6 2	2 9			
	days)			0				1	\mathcal{O}

3. Attempt any *one* part of the following:

$1 \times 10 = 10$

	"O	1 1		• • 1•	<u> </u>		10	1
a.	"Operation res						•10	1
	of techniques,	or even a ph	ilosophy. "Di	scuss the state	ment by expl	aining		
	techniques of (· · · ·						
b.	A newspaper	hawker must	decide how m	nany newspape	ers to purchase	e each	10	1
	day. Each ne	wspaper cost	ts Rs.0.50/- a	and sells for	Re 1.00/ U	Jnsold		
	newspapers ha	. .						
	according to t	U				•		
	U	U						
	number of new	spapers the ha	wker should p	urchase to max	imize their exp	pected		
	profit.			- dV	*			
	Number of	10	20	30	40			
	Newspapers			0.				
	Probability	0.1	0.3	0.4	0.2			

4. Attempt any *one* part of the following:

 $1 \ge 10 = 10$

a.	"Linear Pro	orammino h	as no real-l	life applicat	ions" Do 1	ion agree wi	th this	10	2	
a.	"Linear Programming has no real-life applications". Do you agree with this									
	statement. If No Justify your answer.									
b.	Determine 1	the initial l	basic feasil	ole solution	of the gi	ven transpor	rtation	10	2	
	Determine the initial basic feasible solution of the given transportation problem using Vogel's approximation Method (VAM) and hence find the									
	optimal solution.									
		D1	D2	D3	D4	Supply				
	01	D1 6	D2 4	D3	D4 5	Supply 14				
	01 02	D1 6 8	D2 4 9	D3 1 2	D4 5 7					
	01	D1 6 8 4	D2 4 9 3	D3 1 2 6	D4 5 7 2	14				

5. Attempt any *one* part of the following:

 $1 \ge 10 = 10$

Roll No:

MBA

(SEM II) THEORY EXAMINATION 2023-24

QUANTITATIVE TECHNIQUES FOR MANAGERS

TIME: 3 HRS

M.MARKS: 100

a.	Illustrate H	ungariar	n Algori	thm an	d write	its app	lication	in deci	sion ma	ıking.	10	3
b.	Solve the ga	ame by 1	using th	e princ	iple of o	domina	nce.				10	3
	Player B											
	Player A		1		7		3		4			
			5		6		4		5			
			7		2		0		3			
6.	Attempt any one part of the following:1 x 10										0 = 10	
a.	There are si	x jobs v	which m	nust go	through	n two n	nachines	A and	l B Proc	essing	10	4
	time in hour				e					C		
	JOB 1	2	3	4	5	6						
	A 8	19	11	12	16	20						
	B 7	5	2	14	3	9						
	Evaluate the	e total el	lapsed t	ime and	d the id	le time	for both	machi	ines A &	&В		
b.	Assess the			stics of	f a Quei	ue Syst	em. Als	o discu	uss cust	omer's	10	4
	behavior in						5					
7.	Attempt any	one pa	rt of th	e follov	ving:	6				1 x 1	0 = 10	<u>(</u>).
a.	A machine costs Rs. 10,000/ It's operating and resale values are given below.									10 0	5	
	Determine at what time the machine should be replaced.									0.1		
	Year	1	2	3	4	5	6	7	8		19	
	Operating	1000	1200	1400	1700	2000	2500	3000	3500	-0	+	
	Cost Resale	6000	4000	3200	2600	2500	2400	2000	1600	0	r	
	Value	0000	4000	5200	2000	2300	2400	2000	1000			
b.	Distinguish	betwee	en CPN	A and	PERT.	Also	explain	how	total f	loat is	10	5
	calculated from the network diagram.											

a how