				;	Subject Code: KME057					
Roll No:										

Printed Page: 1 of 2

BTECH (SEM V) THEORY EXAMINATION 2023-24 MECHANICAL VIBRATIONS

TIME: 3 HRS M.MARKS: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1.	Attempt all	questions	in brief.

1.	Attempt un questions in brief.		
Q no.	Question	Marks	СО
a.	What is mean by Frequency?	2	1
b.	What are the effects of vibration?	2	1
c.	Define damping.	2	1
d.	What is meant by Forced vibrations?	2	1
e.	Write a short note on simple Harmonic motion.	2	1
f.	Write short notes on D'Alembert's principle.	2	1
g.	Define Single Degree Freedom?	2	1
h.	Define Multi-degree Freedom system?	2	1
i.	Define Critical speed of shafts?	2	1
j.	Define Principle of vibration absorber?	2	1

SECTION B

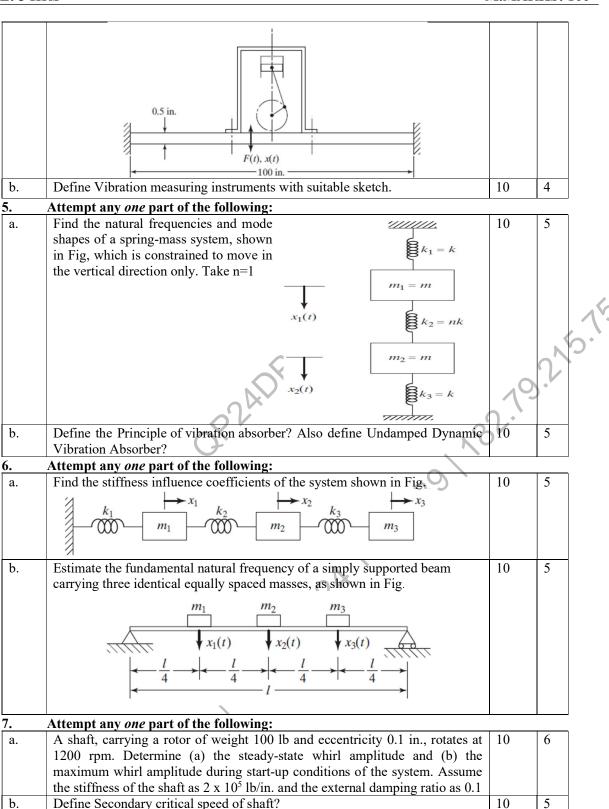
2. Attempt any three of the following:

	recempt any three of the following.		
a.	Define Vibrations of systems with viscous damping?	10	2
b.	Define Harmonic excitation with viscous damping ? Also define steady state vibrations.	10	2
c.	Give Note on (i) Vibration isolators (ii) Vibration Dampers.	10	2
d.	Define Newton's Second Law to Derive Equations of Motion?	10*	2
e.	Explain Undamped free and forced vibration of multi degree freedom system?	10	2

SECTION C

3. Attempt any *one* part of the following:

a.	A cantilever beam carries a mass M at the free end as shown in Fig. A mass m falls from a height h onto the mass M and adheres to it without rebounding. Determine the resulting transverse vibration of the beam.	10	3
	$k = \frac{3EI}{l^3}$		
b.	Explain the classifications of vibration with examples.	10	3


4. Attempt any *one* part of the following:

a.	A reciprocating pump, weighing 150 lb, is mounted at the middle of a steel	10	4
	plate of thickness 0.5 in., width 20 in., and length 100 in., clamped along two		
	edges as shown in Fig. During operation of the pump, the plate is subjected to		
	a harmonic force, $F(t) = 50 \text{ Cos } 62.832t \text{ lb.}$ Find the amplitude of vibration of		
	the plate.		

Printed Page: 2 of 2
Subject Code: KME057
Roll No:

BTECH (SEM V) THEORY EXAMINATION 2023-24 MECHANICAL VIBRATIONS

TIME: 3 HRS M.MARKS: 100

