

Printed Page: 1 of 2
Subject Code: KEE503
Roll No:

BTECH (SEM V) THEORY EXAMINATION 2023-24 ELECTRICAL MACHINES-II

TIME: 3 HRS M.MARKS: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1.	Attempt all questions in brief.		$2 \times 10 = 20$	
Q no.	Question		CO	
a.	A 6-pole alternator rotates at 1000rpm. What is the frequency of the generated voltage?	2	1	
b.	Name the various methods for predetermining the voltage regulation of 3-phase Alternator.	2	1	
c.	What are the V-curves of a synchronous motor?	2	2	
d.	Enlist the conditions for parallel operation of two single-phase alternators.	2	2	
e.	Why the slots in the rotor of an induction motor are usually skewed?	2	3	
f.	What is the condition for producing maximum torque in a 3-phase induction motor?	2	3	
g.	Define cogging in an induction motor.		4	
h.	Why the power factor of an induction motor is low at starting?		4	
i.	List the different types of single-phase induction motors.		5	

SECTION B

Suggest modifications to be made in a dc series motor to operate it

satisfactorily on alternating current?

2.	Attempt any three of the following:		= 30		
a.	Why is rotating field system used in preference to a stationary field?	10	1		
	Describe the difference in construction of rotors of alternators used in				
	hydroelectric plants and steam plants. Draw neat sketches of the two				
	types of rotor.				
b.	Explain working principle of synchronous motor. Discuss how	10	2		
	synchronous motor is started using damper winding.				
c.	A 6-pole, 50 Hz, 3-phase induction motor has resistance and reactance of	10	3		
	0.5Ω and 5Ω per phase respectively. Calculate (i) at what speed the				
	torque is maximum (ii) the ratio Maximum torque / starting torque.				
	Determine the external resistance per phase to be inserted so that starting				
	torque is half of the maximum torque.				
d.	Describe star-delta and autotransformer method of starting of 3-phase	10	4		
	induction motor.				
e.	Explain the working and construction of (i) shaded pole motor and (ii)	10	5		
	Permanent-split Capacitor motor.				

Roll No: Subject Code: KEE503

Printed Page: 2 of 2

BTECH (SEM V) THEORY EXAMINATION 2023-24 ELECTRICAL MACHINES-II

TIME: 3 HRS M.MARKS: 100

SECTION C

3.	Attempt any one part of the following:	10x1 =	10
a.	A 3-phase, 16 pole, star-connected alternator is running at 375 rpm. The	10	1
	stator has 2 slots per pole per phase and 4 conductors per slot		
	accommodated in two layers. The coil span is 150 degrees-electrical.		
	Determine useful flux per pole if the machine gives phase voltage of		
	795.3 V on open circuit.		
o.	Derive emf equation for synchronous generator. Also, derive and	10	1
	incorporate pitch factor and distribution factor in the emf equation.		
4.	Attempt any one part of the following:	10x1 =	10
a.	Two identical 2 MVA synchronous generators are operating in parallel.	10	2
	The governor of the first machine is such that the frequency drops from		
	50 Hz on no-load to 48 Hz on full load and the corresponding uniform		
	frequency drop of second machine from 50 Hz to 47.5 Hz (a) Determine		
	how will the machine share a load of 3000 kW? (b) Determine what is		
	the maximum load at unity power factor that can be delivered without		
	overloading either machine		5
b.	Explain hunting in synchronous motor. What are its causes and remedy?	10	2
	Explain numbing in synchronous motor. What are its eauses and remedy:	1 4	_

5	Attempt any and part of the followings	10x1 = 10
J.	Attempt any <i>one</i> part of the following:	10X1 - 10

a.	Derive and draw the torque-slip characteristics of a 3-phase induction	10	3
	motor indicating starting, maximum torque and the operating region.		
b.	A 4-pole, 440V 3-phase induction motor runs at 1450 rpm at 0.85 pf	10	3
	developing 11 kW power. The stator losses are 1100 W and mechanical		
	losses are 400 W. Determine (i) slip (ii) rotor copper loss (iii) rotor		
	frequency (iv) line current (v) efficiency.		

6. Attempt any one part of the following: 10x1 = 10

a.	Explain (i) Consequent pole method and (ii) V/f method for speed	10	4
	control of 3-phase induction motor.		
b.	Determine the maximum permissible full load kVA of the 3-phase	10	4
	induction motor if the supply current drawn from a 400 V, 50 Hz, 3-		
	phase supply is 120A. The starting current is 6 times full load current,		
	when (i) it is directly connected to the mains (ii) it is connected through		
	an autotransformer with a tapping of 60% and (iii) it is designed for use		
	with star delta starter.		

7. Attempt any *one* part of the following: 10x1 = 10

a.	Discuss blocked ro	otor test and no-load test of single phase induction	10	5
	motor.			
b.	Explain the workin	g of double cage motor induction motor. Also, draw	10	5
	and describe its equ	nivalent circuit diagram.		