

Roll No:

BTECH (SEM V) THEORY EXAMINATION 2023-24 DESIGN OF STRUCTURE-I

TIME: 3 HRS

M.MARKS: 70

Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt *all* questions in brief.

 $2 \ge 7 = 14$


 $7 \ge 3 = 21$

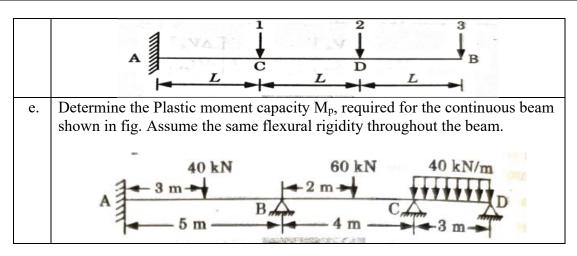
a.	Define Stiffness & Relative Stiffness of the member.
b.	Define Normal thrust & Radial shear in a two hinged parabolic Arch.
c.	Write the elements of suspension Bridges.
d.	What is flexibility and stiffness coefficient?
e.	Explain the differences between force method & displacement method.
f.	What is plastic hinge?
g.	Define shape factor & write the value of shape factor for triangular section.

SECTION B

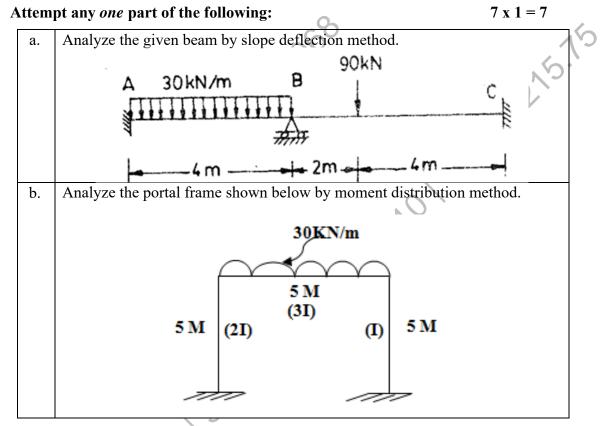
2. Attempt any *three* of the following:

Analyze the given beam by moment distribution method. 19.215 a. 25 KN A 10 KN/M R 2m 2m 4m 4m D b. Analyse the given arch. Find bending moment, normal shear and radial thrust at a section 24m from left end. 60kN 30kN 32 m 80kN 28 m 24 m 120 m A suspension bridge of 100 m span has two three hinged stiffening girders c. supported by two cables having central dip 10m. The dead load on bridge is 5 kN/m2, and live load is 10 kN/m? which covers left half of span only. Find SF and BM at 30 m from left end if road way is 6m wide. Develop the flexibility matrix of given beam. d.

Roll No:


BTECH

(SEM V) THEORY EXAMINATION 2023-24 DESIGN OF STRUCTURE-I


TIME: 3 HRS

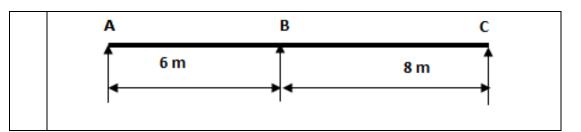
3.

SECTION C

4. Attempt any *one* part of the following:

7 x 1 = 7

a.	Prove that horizontal thrust developed due to point load W acting at crown in a two hinged semicircular arch of radius R is independent of its radius. Consider EI as constant.
b.	Determine the influence line for Ra for the continuous beam as shown in
	Figure. Compute I.L ordinates at 1 m intervals.

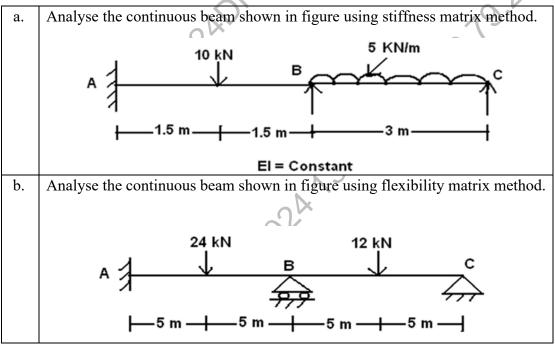

Roll No:

BTECH (SEM V) THEORY EXAMINATION 2023-24

DESIGN OF STRUCTURE-I

TIME: 3 HRS

M.MARKS: 70


5. Attempt any *one* part of the following:

7 x 1

a. A three hinged stiffening girder of a suspension bridge of 120 m span subjected to two-point loads 15 kN each placed at 20 m and 40 m respectively from the left-hand hinge. Determine the bending moment and shear force in the girder at section 40 m from each end. Also determine the maximum tension in the cable which has a central dip of 10 m.
b. A two hinged stiffening girder of a suspension bridge of 140 m span subjected to two-point loads 50 kN each placed at 30 m and 40 m respectively from the left-hand hinge. Determine the bending moment and shear force in the girder at section 35 m from left end.

6. Attempt any *one* part of the following:

7. Attempt any *one* part of the following:

7 x 1 = 7

a.	Find out the shape factor for Triangular and diamond section.
b.	A beam of rectangular cross section b*d is subjected to a bending moment
	stress 0.9Mp. Find out the depth of elastic core.