

Subject Code: KCS502

Roll No:

BTECH

(SEM V) THEORY EXAMINATION 2023-24

COMPILER DESIGN

TIME: 3 HRS

M.MARKS: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

1.	Attempt all questions in brief.	2 x 10 =	= 20
Q no.	Question	Marks	CO
a.	Define bootstrapping in the context of compilers.	2	1
b.	Which phase of compiler is optional and why?	2	1
с.	Explain the concept of shift-reduce parsing.	2	2
d.	Differentiate Parse tree and Syntax tree with an example.	2	2
e.	Define syntax-directed translation schemes.	2	3
f.	What are the two types of attributes that are associated with a grammar symbol?	2	3
g.	Discuss how scope information is represented in a symbol table.	2	4
h.	What is mean by Activation record?	2	4
i.	Discuss two design issues in code generation.	2	5
j.	Explain the concept of global data-flow analysis.	2	5
	SECTION B	C ¹	<i>(</i> р.
2.	Attempt any <i>three</i> of the following:	10x3=3	0
a.	Describe the relationship between finite state machines and regular	10	1
	annuarie na Diagnas harry as an Quannasiana and you die lawigal and harry		1

SECTION A

SECTION B

f the felle 1

2.	Attempt any <i>three</i> of the following:	10x3=3	0
a.	Describe the relationship between finite state machines and regular	10	1
	expressions. Discuss how regular expressions are used in lexical analysis		
	and pattern matching.		
b.	For the grammar	10	2
	$S \rightarrow aAd \mid bBd \mid aBe \mid bAe, A \rightarrow f , B \rightarrow f$		
	Construct LR(1) Parsing table. Also draw the LALR table.		
c.	Explain the concepts of quadruples and triples in the context of syntax-	10	3
	directed translation. Discuss how they represent intermediate code and		
	support optimization.		
d.	Describe a simple stack allocation scheme for managing memory during	10	4
	program execution. Explain how it is used for storing local variables and		
	managing function calls.		
e.	Explain the role of a code generator in a compiler. Discuss its	10	5
	responsibilities and how it translates intermediate code into the target		
	code.		

SECTION C

3.	Attempt any one part of the following:	10x1 = 1	0
a.	Given a regular expression $a(b c)^*$, construct the corresponding	10	1
	Nondeterministic Finite Automaton (NFA) that recognizes the language		
	described by the regular expression.		
b.	Check whether given grammar is ambiguous or not. If ambiguous then convert	10	1
	it into unambiguous grammar: E→E+E E*E id.		

Printed Page: 2 of 2 Subject Code: KCS502

Roll No:

BTECH

(SEM V) THEORY EXAMINATION 2023-24

COMPILER DESIGN

TIME: 3 HRS

M.MARKS: 100

4.	Attempt any <i>one</i> part of the following:	10x1=1	0
a.	Check whether the given grammar is LR(0) or not: $S \rightarrow PQy, P \rightarrow Sy x, Q \rightarrow yS$.	10	2
b.	Consider the following grammar for a simple expression language:	10	2
	$E \rightarrow E + T \mid T$		
	$T \rightarrow T * F F$		
	$F \rightarrow (E) \mid id$		
	Consider expression id * (id+id).Apply shift reduce parsing to construct parse		
	tree.		

5.	Attempt any <i>one</i> part of the following:	10x1 = 1	0
a.	Write syntax directed definition for a given assignment statement:	10	3
	$S \rightarrow id=E$		
	$E \rightarrow E + E$		
	$E \rightarrow E^*E$		
	E→-E		
	$E \rightarrow (E)$		NO.
	E→id		
b.	Explain how syntax-directed translation handles array references within	10	3
	arithmetic expressions.	<u></u>	
	\sim	101.	

6.	Attempt any one part of the following:	10x1=1	0
a.	Define Symbol table? Explain about the data structures used for symbol	10	4
	table.		1
b.	Define semantic errors in a compiler. Discuss the challenges associated with detecting and handling semantic errors. Provide examples to illustrate semantic issues.		
	0.2		

7.	Attempt any <i>one</i> part of the following:	10x1=1	0
a.	Consider a basic block with the following three instructions:	10	5
	1. x = a + b		
	2. $y = x * c$		
	3. z = y - d		
	Apply common sub expression elimination to optimize the basic block.		
b.	Construct a Directed Acyclic Graph (DAG) to represent the following	10	5
	basic block:		
	1. x = a + b		
	2. $y = c - d$		
	3. z = x * y		